File size: 6,216 Bytes
287c28c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
class TrainerCallback:
    def __init__(self) -> None:
        self.callbacks_on_init_start = []
        self.callbacks_on_init_end = []
        self.callbacks_on_epoch_start = []
        self.callbacks_on_epoch_end = []
        self.callbacks_on_train_step_start = []
        self.callbacks_on_train_step_end = []
        self.callbacks_on_keyboard_interrupt = []

    def on_init_start(self, trainer) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "on_init_start"):
                trainer.model.module.on_init_start(trainer)
        else:
            if hasattr(trainer.model, "on_init_start"):
                trainer.model.on_init_start(trainer)

        if hasattr(trainer.criterion, "on_init_start"):
            trainer.criterion.on_init_start(trainer)

        if hasattr(trainer.optimizer, "on_init_start"):
            trainer.optimizer.on_init_start(trainer)

        if self.callbacks_on_init_start:
            for callback in self.callbacks_on_init_start:
                callback(trainer)

    def on_init_end(self, trainer) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "on_init_end"):
                trainer.model.module.on_init_end(trainer)
        else:
            if hasattr(trainer.model, "on_init_end"):
                trainer.model.on_init_end(trainer)

        if hasattr(trainer.criterion, "on_init_end"):
            trainer.criterion.on_init_end(trainer)

        if hasattr(trainer.optimizer, "on_init_end"):
            trainer.optimizer.on_init_end(trainer)

        if self.callbacks_on_init_end:
            for callback in self.callbacks_on_init_start:
                callback(trainer)

    def on_epoch_start(self, trainer) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "on_epoch_start"):
                trainer.model.module.on_epoch_start(trainer)
        else:
            if hasattr(trainer.model, "on_epoch_start"):
                trainer.model.on_epoch_start(trainer)

        if hasattr(trainer.criterion, "on_epoch_start"):
            trainer.criterion.on_epoch_start(trainer)

        if hasattr(trainer.optimizer, "on_epoch_start"):
            trainer.optimizer.on_epoch_start(trainer)

        if self.callbacks_on_epoch_start:
            for callback in self.callbacks_on_epoch_start:
                callback(trainer)

    def on_epoch_end(self, trainer) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "on_epoch_end"):
                trainer.model.module.on_epoch_end(trainer)
        else:
            if hasattr(trainer.model, "on_epoch_end"):
                trainer.model.on_epoch_end(trainer)

        if hasattr(trainer.criterion, "on_epoch_end"):
            trainer.criterion.on_epoch_end(trainer)

        if hasattr(trainer.optimizer, "on_epoch_end"):
            trainer.optimizer.on_epoch_end(trainer)

        if self.callbacks_on_epoch_end:
            for callback in self.callbacks_on_epoch_end:
                callback(trainer)

    @staticmethod
    def before_backward_pass(trainer, loss_dict) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "before_backward_pass"):
                trainer.model.module.before_backward_pass(loss_dict, trainer.optimizer)
        else:
            if hasattr(trainer.model, "before_backward_pass"):
                trainer.model.before_backward_pass(loss_dict, trainer.optimizer)

    @staticmethod
    def before_gradient_clipping(trainer) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "before_gradient_clipping"):
                trainer.model.module.before_gradient_clipping()
        else:
            if hasattr(trainer.model, "before_gradient_clipping"):
                trainer.model.before_gradient_clipping()

    def on_train_step_start(self, trainer) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "on_train_step_start"):
                trainer.model.module.on_train_step_start(trainer)
        else:
            if hasattr(trainer.model, "on_train_step_start"):
                trainer.model.on_train_step_start(trainer)

        if hasattr(trainer.criterion, "on_train_step_start"):
            trainer.criterion.on_train_step_start(trainer)

        if hasattr(trainer.optimizer, "on_train_step_start"):
            trainer.optimizer.on_train_step_start(trainer)

        if self.callbacks_on_train_step_start:
            for callback in self.callbacks_on_train_step_start:
                callback(trainer)

    def on_train_step_end(self, trainer) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "on_train_step_end"):
                trainer.model.module.on_train_step_end(trainer)
        else:
            if hasattr(trainer.model, "on_train_step_end"):
                trainer.model.on_train_step_end(trainer)

        if hasattr(trainer.criterion, "on_train_step_end"):
            trainer.criterion.on_train_step_end(trainer)

        if hasattr(trainer.optimizer, "on_train_step_end"):
            trainer.optimizer.on_train_step_end(trainer)

        if self.callbacks_on_train_step_end:
            for callback in self.callbacks_on_train_step_end:
                callback(trainer)

    def on_keyboard_interrupt(self, trainer) -> None:
        if hasattr(trainer.model, "module"):
            if hasattr(trainer.model.module, "on_keyboard_interrupt"):
                trainer.model.module.on_keyboard_interrupt(trainer)
        else:
            if hasattr(trainer.model, "on_keyboard_interrupt"):
                trainer.model.on_keyboard_interrupt(trainer)

        if hasattr(trainer.criterion, "on_keyboard_interrupt"):
            trainer.criterion.on_keyboard_interrupt(trainer)

        if hasattr(trainer.optimizer, "on_keyboard_interrupt"):
            trainer.optimizer.on_keyboard_interrupt(trainer)

        if self.callbacks_on_keyboard_interrupt:
            for callback in self.callbacks_on_keyboard_interrupt:
                callback(trainer)