File size: 72,265 Bytes
287c28c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 |
# -*- coding: utf-8 -*-
import importlib
import logging
import os
import platform
import sys
import time
import traceback
from dataclasses import dataclass, field
from inspect import signature
from typing import Callable, Dict, List, Tuple, Union
import torch
import torch.distributed as dist
from coqpit import Coqpit
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader
from trainer.callbacks import TrainerCallback
from trainer.generic_utils import (
KeepAverage,
count_parameters,
get_experiment_folder_path,
get_git_branch,
remove_experiment_folder,
set_partial_state_dict,
to_cuda,
)
from trainer.io import (
copy_model_files,
get_last_checkpoint,
load_fsspec,
save_best_model,
save_checkpoint,
)
from trainer.logging import ConsoleLogger, DummyLogger, logger_factory
from trainer.trainer_utils import (
get_optimizer,
get_scheduler,
is_apex_available,
setup_torch_training_env,
)
from trainer.utils.distributed import init_distributed
logger = logging.getLogger("trainer")
if is_apex_available():
from apex import amp
@dataclass
class TrainerConfig(Coqpit):
"""Config fields tweaking the Trainer for a model.
A ````ModelConfig```, by inheriting ```TrainerConfig``` must be defined for using 👟.
Inherit this by a new model config and override the fields as needed.
All the fields can be overridden from comman-line as ```--coqpit.arg_name=value```.
Example::
Run the training code by overriding the ```lr``` and ```plot_step``` fields.
>>> python train.py --coqpit.plot_step=22 --coqpit.lr=0.001
Defining a model using ```TrainerConfig```.
>>> from trainer import TrainerConfig
>>> class MyModelConfig(TrainerConfig):
... optimizer: str = "Adam"
... lr: float = 0.001
... epochs: int = 1
... ...
>>> class MyModel(nn.module):
... def __init__(self, config):
... ...
>>> model = MyModel(MyModelConfig())
"""
# Fields for the run
output_path: str = field(default="output")
logger_uri: str = field(
default=None,
metadata={
"help": "URI to save training artifacts by the logger. If not set, logs will be saved in the output_path. Defaults to None"
},
)
run_name: str = field(default="run", metadata={"help": "Name of the run. Defaults to 'run'"})
project_name: str = field(default=None, metadata={"help": "Name of the project. Defaults to None"})
run_description: str = field(
default="🐸Coqui trainer run.",
metadata={"help": "Notes and description about the run. Defaults to '🐸Coqui trainer run.'"},
)
# Fields for logging
print_step: int = field(
default=25, metadata={"help": "Print training stats on the terminal every print_step steps. Defaults to 25"}
)
plot_step: int = field(
default=100, metadata={"help": "Plot training stats on the logger every plot_step steps. Defaults to 100"}
)
model_param_stats: bool = field(
default=False, metadata={"help": "Log model parameters stats on the logger dashboard. Defaults to False"}
)
wandb_entity: str = field(default=None, metadata={"help": "Wandb entity to log the run. Defaults to None"})
dashboard_logger: str = field(
default="tensorboard", metadata={"help": "Logger to use for the tracking dashboard. Defaults to 'tensorboard'"}
)
# Fields for checkpointing
log_model_step: int = field(
default=None,
metadata={
"help": "Save checkpoint to the logger every log_model_step steps. If not defined `save_step == log_model_step`."
},
)
save_step: int = field(
default=10000, metadata={"help": "Save local checkpoint every save_step steps. Defaults to 10000"}
)
save_n_checkpoints: int = field(default=5, metadata={"help": "Keep n local checkpoints. Defaults to 5"})
save_checkpoints: bool = field(default=True, metadata={"help": "Save checkpoints locally. Defaults to True"})
save_all_best: bool = field(
default=False, metadata={"help": "Save all best checkpoints and keep the older ones. Defaults to False"}
)
save_best_after: int = field(
default=10000, metadata={"help": "Wait N steps to save best checkpoints. Defaults to 10000"}
)
target_loss: str = field(
default=None, metadata={"help": "Target loss name to select the best model. Defaults to None"}
)
# Fields for eval and test run
print_eval: bool = field(default=False, metadata={"help": "Print eval steps on the terminal. Defaults to False"})
test_delay_epochs: int = field(default=0, metadata={"help": "Wait N epochs before running the test. Defaults to 0"})
run_eval: bool = field(
default=True, metadata={"help": "Run evalulation epoch after training epoch. Defaults to True"}
)
# Fields for distributed training
distributed_backend: str = field(
default="nccl", metadata={"help": "Distributed backend to use. Defaults to 'nccl'"}
)
distributed_url: str = field(
default="tcp://localhost:54321",
metadata={"help": "Distributed url to use. Defaults to 'tcp://localhost:54321'"},
)
# Fields for training specs
mixed_precision: bool = field(default=False, metadata={"help": "Use mixed precision training. Defaults to False"})
epochs: int = field(default=1000, metadata={"help": "Number of epochs to train. Defaults to 1000"})
batch_size: int = field(default=32, metadata={"help": "Batch size to use. Defaults to 32"})
eval_batch_size: int = field(default=16, metadata={"help": "Batch size to use for eval. Defaults to 16"})
grad_clip: float = field(
default=0.0, metadata={"help": "Gradient clipping value. Disabled if <= 0. Defaults to 0.0"}
)
scheduler_after_epoch: bool = field(
default=True,
metadata={"help": "Step the scheduler after each epoch else step after each iteration. Defaults to True"},
)
# Fields for optimzation
lr: Union[float, List[float]] = field(
default=0.001, metadata={"help": "Learning rate for each optimizer. Defaults to 0.001"}
)
optimizer: Union[str, List[str]] = field(default=None, metadata={"help": "Optimizer(s) to use. Defaults to None"})
optimizer_params: Union[Dict, List[Dict]] = field(
default_factory=dict, metadata={"help": "Optimizer(s) arguments. Defaults to {}"}
)
lr_scheduler: Union[str, List[str]] = field(
default=None, metadata={"help": "Learning rate scheduler(s) to use. Defaults to None"}
)
lr_scheduler_params: Dict = field(
default_factory=dict, metadata={"help": "Learning rate scheduler(s) arguments. Defaults to {}"}
)
lr_scheduler_aligner: Union[str, List[str]] = field(
default=None, metadata={"help": "Learning rate scheduler(s) to use. Defaults to None"}
)
lr_scheduler_aligner_params: Dict = field(
default_factory=dict, metadata={"help": "Learning rate scheduler(s) arguments. Defaults to {}"}
)
use_grad_scaler: bool = field(
default=False,
metadata={
"help": "Enable/disable gradient scaler explicitly. It is enabled by default with AMP training. Defaults to False"
},
)
cudnn_enable: bool = field(default=True, metadata={"help": "Enable/disable cudnn explicitly. Defaults to True"})
cudnn_deterministic: bool = field(
default=False,
metadata={
"help": "Enable/disable deterministic cudnn operations. Set this True for reproducibility but it slows down training significantly. Defaults to False."
},
)
cudnn_benchmark: bool = field(
default=False,
metadata={
"help": "Enable/disable cudnn benchmark explicitly. Set this False if your input size change constantly. Defaults to False"
},
)
training_seed: int = field(
default=54321,
metadata={"help": "Global seed for torch, random and numpy random number generator. Defaults to 54321"},
)
@dataclass
class TrainerArgs(Coqpit):
"""Trainer arguments that can be accessed from the command line.
Examples::
>>> python train.py --restore_path /path/to/checkpoint.pth
"""
continue_path: str = field(
default="",
metadata={
"help": "Path to a training folder to continue training. Restore the model from the last checkpoint and continue training under the same folder."
},
)
restore_path: str = field(
default="",
metadata={
"help": "Path to a model checkpoit. Restore the model with the given checkpoint and start a new training."
},
)
best_path: str = field(
default="",
metadata={
"help": "Best model file to be used for extracting the best loss. If not specified, the latest best model in continue path is used"
},
)
use_ddp: bool = field(
default=False,
metadata={"help": "Use DDP in distributed training. It is to set in `distribute.py`. Do not set manually."},
)
grad_accum_steps: int = field(
default=1,
metadata={
"help": "Number of gradient accumulation steps. It is used to accumulate gradients over multiple batches."
},
)
overfit_batch: bool = field(default=False, metadata={"help": "Overfit a single batch for debugging."})
skip_train_epoch: bool = field(
default=False,
metadata={"help": "Skip training and only run evaluation and test."},
)
small_run: int = field(
default=None,
metadata={
"help": "Only use a subset of the samples for debugging. Set the number of samples to use. Defaults to None. "
},
)
gpu: int = field(
default=None, metadata={"help": "GPU ID to use if ```CUDA_VISIBLE_DEVICES``` is not set. Defaults to None."}
)
# only for DDP
rank: int = field(default=0, metadata={"help": "Process rank in a distributed training. Don't set manually."})
group_id: str = field(
default="", metadata={"help": "Process group id in a distributed training. Don't set manually."}
)
class Trainer:
def __init__( # pylint: disable=dangerous-default-value
self,
args: TrainerArgs,
config: Coqpit,
output_path: str,
c_logger: ConsoleLogger = None,
dashboard_logger: "Logger" = None,
model: nn.Module = None,
get_model: Callable = None,
get_data_samples: Callable = None,
train_samples: List = None,
eval_samples: List = None,
test_samples: List = None,
training_assets: Dict = {},
parse_command_line_args: bool = True,
gpu: int = None,
) -> None:
"""Simple yet powerful 🐸💬 TTS trainer for PyTorch. It can train all the available `tts` and `vocoder` models
or easily be customized.
Notes:
Supports Automatic Mixed Precision training. If `Apex` is availabe, it automatically picks that, else
it uses PyTorch's native `amp` module. `Apex` may provide more stable training in some cases.
Args:
args (Union[Coqpit, Namespace]): Training arguments parsed either from console by `argparse` or `TrainerArgs`
config object.
config (Coqpit): Model config object. It includes all the values necessary for initializing, training, evaluating
and testing the model.
output_path (str): Path to the output training folder. All the files are saved under thi path.
c_logger (ConsoleLogger, optional): Console logger for printing training status. If not provided, the default
console logger is used. Defaults to None.
dashboard_logger Union[TensorboardLogger, WandbLogger]: Dashboard logger. If not provided, the tensorboard logger is used.
Defaults to None.
model (nn.Module, optional): Initialized and ready-to-train model. If it is not defined, `Trainer`
initializes a model from the provided config. Defaults to None.
get_model (Callable):
A function that returns a model. It is used to initialize the model when `model` is not provided.
It either takes the config as the only argument or does not take any argument.
Defaults to None
get_data_samples (Callable):
A function that returns a list of training and evaluation samples. Used if `train_samples` and
`eval_samples` are None. Defaults to None.
train_samples (List):
A list of training samples used by the model's `get_train_data_loader` to init the `dataset` and the
`data_loader`. Defaults to None.
eval_samples (List):
A list of evaluation samples used by the model's `get_eval_data_loader` to init the `dataset` and the
`data_loader`. Defaults to None.
test_samples (List):
A list of test samples used by the model's `get_test_data_loader` to init the `dataset` and the
`data_loader`. If None, the ```model.test_run()``` is expected to load the data. Defaults to None.
training_assets (Dict):
A dictionary of assets to be used at training and passed to the model's ```train_log(), eval_log(), get_data_loader()```
during training. It can include `AudioProcessor` or/and `Tokenizer`. Defaults to {}.
parse_command_line_args (bool):
If true, parse command-line arguments and update `TrainerArgs` and model `config` values. Set it
to false if you parse the arguments yourself. Defaults to True.
gpu (int):
GPU ID to use for training If "CUDA_VISIBLE_DEVICES" is not set. Defaults to None.
Example::
Running trainer with a model.
>>> args = TrainerArgs(...)
>>> config = ModelConfig(...)
>>> model = Model(config)
>>> trainer = Trainer(args, config, output_path, model=model)
>>> trainer.fit()
TODO:
- Wrap model for not calling .module in DDP.
- Deepspeed integration
- Profiler integration.
- Overfitting to a batch.
- TPU training
"""
if parse_command_line_args:
# parse command-line arguments to override TrainerArgs()
args, coqpit_overrides = self.parse_argv(args)
# get ready for training and parse command-line arguments to override the model config
config, new_fields = self.init_training(args, coqpit_overrides, config)
elif args.continue_path or args.restore_path:
config, new_fields = self.init_training(args, {}, config)
else:
new_fields = {}
# set the output path
if args.continue_path:
# use the same path as the continuing run
output_path = args.continue_path
else:
# override the output path if it is provided
output_path = config.output_path if output_path is None else output_path
# create a new output folder name
output_path = get_experiment_folder_path(config.output_path, config.run_name)
os.makedirs(output_path, exist_ok=True)
# copy training assets to the output folder
copy_model_files(config, output_path, new_fields)
# init class members
self.args = args
self.config = config
self.output_path = output_path
self.training_assets = training_assets
self.grad_accum_steps = args.grad_accum_steps
self.overfit_batch = args.overfit_batch
self.skip_train_epoch = args.skip_train_epoch
assert self.grad_accum_steps > 0, " [!] grad_accum_steps must be greater than 0."
# setup logging
log_file = os.path.join(self.output_path, f"trainer_{args.rank}_log.txt")
self._setup_logger_config(log_file)
# setup training environment
self.use_cuda, self.num_gpus = self.setup_training_environment(args=args, config=config, gpu=gpu)
# init loggers
self.dashboard_logger, self.c_logger = self.init_loggers(
self.args, self.config, output_path, dashboard_logger, c_logger
)
# self.c_logger.logger = logger
if not self.config.log_model_step:
self.config.log_model_step = self.config.save_step
self.total_steps_done = 0
self.epochs_done = 0
self.restore_step = 0
self.restore_epoch = 0
self.best_loss = float("inf")
self.train_loader = None
self.test_loader = None
self.eval_loader = None
self.keep_avg_train = None
self.keep_avg_eval = None
self.use_apex = self._is_apex_available()
self.use_amp_scaler = self.use_cuda if self.config.mixed_precision else self.config.use_grad_scaler
if train_samples is not None:
# use the provided samples
self.train_samples = train_samples
self.eval_samples = eval_samples
self.test_samples = test_samples
elif get_data_samples is not None:
# run `get_data_samples` to init the data samples
( # pylint: disable=unbalanced-tuple-unpacking
self.train_samples,
self.eval_samples,
self.test_samples,
) = self.run_get_data_samples(config, get_data_samples)
else:
# expecting to load the samples in `model.get_data_loader()`
self.train_samples = None
self.eval_samples = None
self.test_samples = None
# only use a subset of the samples if small_run is set
if args.small_run is not None:
print(f"[!] Small Run, only using {args.small_run} samples.")
self.train_samples = None if self.train_samples is None else self.train_samples[: args.small_run]
self.eval_samples = None if self.eval_samples is None else self.eval_samples[: args.small_run]
self.test_samples = None if self.test_samples is None else self.test_samples[: args.small_run]
# init the model
if model is None and get_model is None:
raise ValueError("[!] `model` and `get_model` cannot both be None.")
if model is not None:
self.model = model
else:
self.run_get_model(self.config, get_model)
# init model's training assets
if hasattr(self.model, "init_for_training"):
self.model.init_for_training()
# setup criterion
self.criterion = self.get_criterion(self.model)
# DISTRUBUTED
if self.num_gpus > 1:
init_distributed(
args.rank,
self.num_gpus,
args.group_id,
self.config.distributed_backend,
self.config.distributed_url,
)
if self.use_cuda:
self.model.cuda()
if isinstance(self.criterion, list):
for criterion in self.criterion:
if isinstance(criterion, torch.nn.Module):
criterion.cuda()
else:
if isinstance(self.criterion, torch.nn.Module):
self.criterion.cuda()
# setup optimizer
self.optimizer = self.get_optimizer(self.model, self.config)
# CALLBACK
self.callbacks = TrainerCallback()
self.callbacks.on_init_start(self)
# init AMP
if self.use_amp_scaler:
if self.use_apex:
self.scaler = None
self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level="O1")
self.scaler = torch.cuda.amp.GradScaler()
else:
self.scaler = None
if self.args.restore_path:
(self.model, self.optimizer, self.scaler, self.restore_step, self.restore_epoch) = self.restore_model(
self.config, args.restore_path, self.model, self.optimizer, self.scaler
)
self.scaler = torch.cuda.amp.GradScaler()
# setup scheduler
self.scheduler = self.get_scheduler(self.model, self.config, self.optimizer)
self.scheduler = self.restore_scheduler(
self.scheduler, self.args, self.config, self.restore_epoch, self.restore_step
)
# DISTRIBUTED
if self.num_gpus > 1:
self.model = DDP_th(self.model, device_ids=[args.rank], output_device=args.rank)
# count model size
num_params = count_parameters(self.model)
logger.info("\n > Model has %i parameters", num_params)
self.callbacks.on_init_end(self)
self.dashboard_logger.add_config(config)
@staticmethod
def parse_argv(args: Union[Coqpit, List]):
"""Parse command line arguments to init or override `TrainerArgs()`."""
if isinstance(args, Coqpit):
parser = args.init_argparse(arg_prefix="")
else:
train_config = TrainerArgs()
parser = train_config.init_argparse(arg_prefix="")
training_args, coqpit_overrides = parser.parse_known_args()
args.parse_args(training_args)
return args, coqpit_overrides
@staticmethod
def init_loggers(args: "Coqpit", config: "Coqpit", output_path: str, dashboard_logger=None, c_logger=None):
"""Init console and dashboard loggers.
Use the given logger if passed externally else use config values to pick the right logger.
Return a dashboard logger only for the rank 0 process in DDP
Define a console logger for each process in DDP
Args:
args (argparse.Namespace or Coqpit): Parsed trainer arguments.
config (Coqpit): Model config.
output_path (str): Output path to save the training artifacts.
dashboard_logger (DashboardLogger): Object passed to the trainer from outside.
c_logger (ConsoleLogger): Object passed to the trained from outside.
Returns:
Initialized dashboard_logger and console_logger objects.
"""
c_logger = ConsoleLogger() if c_logger is None else c_logger
# only allow dashboard logging for the main process in DDP mode
if args.rank:
return DummyLogger(), c_logger
if dashboard_logger is None:
dashboard_logger = logger_factory(config, output_path)
return dashboard_logger, c_logger
def init_training(
self, args: TrainerArgs, coqpit_overrides: Dict, config: Coqpit = None
): # pylint: disable=no-self-use
"""Initialize training and update model configs from command line arguments.
Args:
args (argparse.Namespace or dict like): Parsed trainer arguments.
config_overrides (argparse.Namespace or dict like): Parsed config overriding arguments.
config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None.
Returns:
config (Coqpit): Config paramaters.
"""
# set arguments for continuing training
if args.continue_path:
args.config_path = os.path.join(args.continue_path, "config.json")
args.restore_path, best_model = get_last_checkpoint(args.continue_path)
if not args.best_path:
args.best_path = best_model
# use the same config
if config:
config.load_json(args.config_path)
else:
coqpit = Coqpit()
coqpit.load_json(args.config_path)
# override config values from command-line args
# TODO: Maybe it is better to do it outside
if len(coqpit_overrides) > 0:
config.parse_known_args(coqpit_overrides, relaxed_parser=True)
# update the config.json fields and copy it to the output folder
new_fields = {}
if args.rank == 0:
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
return config, new_fields
@staticmethod
def setup_training_environment(args, config, gpu):
if platform.system() != "Windows":
# https://github.com/pytorch/pytorch/issues/973
import resource # pylint: disable=import-outside-toplevel
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
# set and initialize Pytorch runtime
use_cuda, num_gpus = setup_torch_training_env(
cudnn_enable=config.cudnn_enable,
cudnn_deterministic=config.cudnn_deterministic,
cudnn_benchmark=config.cudnn_benchmark,
use_ddp=args.use_ddp,
training_seed=config.training_seed,
gpu=gpu if args.gpu is None else args.gpu,
)
return use_cuda, num_gpus
@staticmethod
def run_get_model(config: Coqpit, get_model: Callable) -> nn.Module:
"""Run the `get_model` function and return the model.
Args:
config (Coqpit): Model config.
Returns:
nn.Module: initialized model.
"""
if len(signature(get_model).sig.parameters) == 1:
model = get_model(config)
else:
model = get_model()
return model
@staticmethod
def run_get_data_samples(config: Coqpit, get_data_samples: Callable) -> nn.Module:
if callable(get_data_samples):
if len(signature(get_data_samples).sig.parameters) == 1:
train_samples, eval_samples = get_data_samples(config)
else:
train_samples, eval_samples = get_data_samples()
return train_samples, eval_samples
return None, None
def restore_model(
self,
config: Coqpit,
restore_path: str,
model: nn.Module,
optimizer: torch.optim.Optimizer,
scaler: torch.cuda.amp.GradScaler = None,
) -> Tuple[nn.Module, torch.optim.Optimizer, torch.cuda.amp.GradScaler, int]:
"""Restore training from an old run. It restores model, optimizer, AMP scaler and training stats.
Args:
config (Coqpit): Model config.
restore_path (str): Path to the restored training run.
model (nn.Module): Model to restored.
optimizer (torch.optim.Optimizer): Optimizer to restore.
scaler (torch.cuda.amp.GradScaler, optional): AMP scaler to restore. Defaults to None.
Returns:
Tuple[nn.Module, torch.optim.Optimizer, torch.cuda.amp.GradScaler, int]: [description]
"""
def _restore_list_objs(states, obj):
if isinstance(obj, list):
for idx, state in enumerate(states):
obj[idx].load_state_dict(state)
else:
obj.load_state_dict(states)
return obj
logger.info(" > Restoring from %s ...", os.path.basename(restore_path))
checkpoint = load_fsspec(restore_path, map_location="cpu")
try:
logger.info(" > Restoring Model...")
model.load_state_dict(checkpoint["model"])
logger.info(" > Restoring Optimizer...")
optimizer = _restore_list_objs(checkpoint["optimizer"], optimizer)
if "scaler" in checkpoint and self.use_amp_scaler and checkpoint["scaler"]:
logger.info(" > Restoring Scaler...")
scaler = _restore_list_objs(checkpoint["scaler"], scaler)
except (KeyError, RuntimeError, ValueError):
logger.info(" > Partial model initialization...")
model_dict = model.state_dict()
model_dict = set_partial_state_dict(model_dict, checkpoint["model"], config)
model.load_state_dict(model_dict)
del model_dict
optimizer = self.restore_lr(config, self.args, model, optimizer)
logger.info(" > Model restored from step %i", checkpoint["step"])
restore_step = checkpoint["step"] + 1 # +1 not to immediately checkpoint if the model is restored
restore_epoch = checkpoint["epoch"]
torch.cuda.empty_cache()
return model, optimizer, scaler, restore_step, restore_epoch
def restore_lr(self, config, args, model, optimizer):
# use the same lr if continue training
if not args.continue_path:
if isinstance(optimizer, list):
for idx, optim in enumerate(optimizer):
for group in optim.param_groups:
group["lr"] = self.get_lr(model, config)[idx]
else:
for group in optimizer.param_groups:
group["lr"] = self.get_lr(model, config)
return optimizer
#########################
# DATA LOADING FUNCTIONS
#########################
def _get_loader(
self,
model: nn.Module,
config: Coqpit,
assets: Dict,
is_eval: str,
samples: List,
verbose: bool,
num_gpus: int,
) -> DataLoader:
if num_gpus > 1:
if hasattr(model.module, "get_data_loader"):
loader = model.module.get_data_loader(
config,
assets,
is_eval,
samples,
verbose,
num_gpus,
self.args.rank,
)
else:
if hasattr(model, "get_data_loader"):
loader = model.get_data_loader(
config=config, assets=assets, is_eval=is_eval, samples=samples, verbose=verbose, num_gpus=num_gpus
)
return loader
def get_train_dataloader(self, training_assets: Dict, samples: List, verbose: bool) -> DataLoader:
"""Initialize and return a training data loader.
Call ```model.get_train_data_loader``` if it is implemented, else call ```model.get_data_loader```
and set ```is_eval=False```.
Args:
ap (AudioProcessor): Audio processor.
samples (List): Data samples used for training.
verbose (bool): enable/disable printing loader stats at initialization.
Returns:
DataLoader: Initialized training data loader.
"""
if self.num_gpus > 1:
if hasattr(self.model.module, "get_train_data_loader"):
loader = self.model.module.get_train_data_loader(
self.config,
self.training_assets,
samples,
verbose,
self.num_gpus,
self.args.rank,
)
return loader
else:
if hasattr(self.model, "get_train_data_loader"):
loader = self.model.get_train_data_loader(
self.config, self.training_assets, samples, verbose, self.num_gpus
)
return loader
return self._get_loader(
self.model,
self.config,
training_assets,
False,
samples,
verbose,
self.num_gpus,
)
def get_eval_dataloader(self, training_assets: Dict, samples: List, verbose: bool) -> DataLoader:
"""Initialize and return a evaluation data loader.
Call ```model.get_eval_data_loader``` if it is implemented, else call ```model.get_data_loader```
and set ```is_eval=True```.
Args:
ap (AudioProcessor): Audio processor.
samples (List): Data samples used for training.
verbose (bool): enable/disable printing loader stats at initialization.
Returns:
DataLoader: Initialized training data loader.
"""
if self.num_gpus > 1:
if hasattr(self.model.module, "get_eval_data_loader"):
loader = self.model.module.get_eval_data_loader(
self.config,
self.training_assets,
samples,
verbose,
self.num_gpus,
self.args.rank,
)
return loader
else:
if hasattr(self.model, "get_eval_data_loader"):
loader = self.model.get_eval_data_loader(
self.config, self.training_assets, samples, verbose, self.num_gpus
)
return loader
return self._get_loader(
self.model,
self.config,
training_assets,
True,
samples,
verbose,
self.num_gpus,
)
def get_test_dataloader(self, training_assets: Dict, samples: List, verbose: bool) -> DataLoader:
"""Initialize and return a evaluation data loader.
Call ```model.get_test_data_loader``` if it is implemented, else call ```model.get_data_loader```
and set ```is_eval=True```.
Args:
ap (AudioProcessor): Audio processor.
samples (List): Data samples used for training.
verbose (bool): enable/disable printing loader stats at initialization.
Returns:
DataLoader: Initialized training data loader.
"""
if self.num_gpus > 1:
if hasattr(self.model.module, "get_test_data_loader"):
loader = self.model.module.get_test_data_loader(
self.config,
self.training_assets,
samples,
verbose,
self.num_gpus,
self.args.rank,
)
return loader
else:
if hasattr(self.model, "get_test_data_loader"):
loader = self.model.get_test_data_loader(
self.config, self.training_assets, samples, verbose, self.num_gpus
)
return loader
return self._get_loader(
self.model,
self.config,
training_assets,
True,
samples,
verbose,
self.num_gpus,
)
def format_batch(self, batch: List) -> Dict:
"""Format the dataloader output and return a batch.
1. Call ```model.format_batch```.
2. Pass the batch to the Device.
3. Call ```model.format_batch_on_device```.
Args:
batch (List): Batch returned by the dataloader.
Returns:
Dict: Formatted batch.
"""
try:
if self.num_gpus > 1:
batch = self.model.module.format_batch(batch)
else:
batch = self.model.format_batch(batch)
except NotImplementedError:
pass
if isinstance(batch, dict):
for k, v in batch.items():
batch[k] = to_cuda(v)
elif isinstance(batch, list):
batch = [to_cuda(v) for v in batch]
try:
if self.num_gpus > 1:
batch = self.model.module.format_batch_on_device(batch)
else:
batch = self.model.format_batch_on_device(batch)
except NotImplementedError:
pass
return batch
######################
# TRAIN FUNCTIONS
######################
@staticmethod
def master_params(optimizer: torch.optim.Optimizer):
"""Generator over parameters owned by the optimizer.
Used to select parameters used by the optimizer for gradient clipping.
Args:
optimizer: Target optimizer.
"""
for group in optimizer.param_groups:
for p in group["params"]:
yield p
@staticmethod
def _model_train_step(
batch: Dict, model: nn.Module, criterion: nn.Module, optimizer_idx: int = None
) -> Tuple[Dict, Dict]:
"""
Perform a trainig forward step. Compute model outputs and losses.
Args:
batch (Dict): [description]
model (nn.Module): [description]
criterion (nn.Module): [description]
optimizer_idx (int, optional): [description]. Defaults to None.
Returns:
Tuple[Dict, Dict]: [description]
"""
input_args = [batch, criterion]
if optimizer_idx is not None:
input_args.append(optimizer_idx)
# unwrap model in DDP training
if hasattr(model, "module"):
return model.module.train_step(*input_args)
return model.train_step(*input_args)
def _optimize(
self,
batch: Dict,
model: nn.Module,
optimizer: torch.optim.Optimizer,
scaler: "AMPScaler",
criterion: nn.Module,
scheduler: Union[torch.optim.lr_scheduler._LRScheduler, List], # pylint: disable=protected-access
config: Coqpit,
optimizer_idx: int = None,
step_optimizer: bool = True,
num_optimizers: int = 1,
) -> Tuple[Dict, Dict, int]:
"""Perform a forward - backward pass and run the optimizer.
Args:
batch (Dict): Input batch. If
model (nn.Module): Model for training. Defaults to None.
optimizer (Union[nn.optim.Optimizer, List]): Model's optimizer. If it is a list then, `optimizer_idx` must be defined to indicate the optimizer in use.
scaler (AMPScaler): AMP scaler.
criterion (nn.Module): Model's criterion.
scheduler (torch.optim.lr_scheduler._LRScheduler): LR scheduler used by the optimizer.
config (Coqpit): Model config.
optimizer_idx (int, optional): Target optimizer being used. Defaults to None.
step_optimizer (bool, optional): Whether step the optimizer. If False, gradients are accumulated but
but model parameters are not updated. Defaults to True.
num_optimizers (int, optional): Number of optimizers. Defaults to 1.
Raises:
RuntimeError: When the loss is NaN.
Returns:
Tuple[Dict, Dict, int, torch.Tensor]: model outputs, losses, step time and gradient norm.
"""
step_start_time = time.time()
# forward pass and loss computation
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
if optimizer_idx is not None:
outputs, loss_dict = self._model_train_step(batch, model, criterion, optimizer_idx=optimizer_idx)
else:
outputs, loss_dict = self._model_train_step(batch, model, criterion)
# skip the rest
if not outputs:
if loss_dict:
raise RuntimeError(" [!] Model must return outputs when losses are computed.")
step_time = time.time() - step_start_time
return None, {}, step_time
# accumulated gradients adjustment
loss_dict["loss"] = loss_dict["loss"] / float(self.grad_accum_steps)
# set gradient clipping threshold
if "grad_clip" in config and config.grad_clip is not None:
if optimizer_idx is not None and isinstance(config.grad_clip, list):
grad_clip = config.grad_clip[optimizer_idx]
else:
grad_clip = config.grad_clip
else:
grad_clip = 0.0 # meaning no gradient clipping
# optimizer step
grad_norm = 0
update_lr_scheduler = True
if self.use_amp_scaler:
if self.use_apex:
# TODO: verify AMP use for GAN training in TTS
# https://nvidia.github.io/apex/advanced.html?highlight=accumulate#backward-passes-with-multiple-optimizers
with amp.scale_loss(loss_dict["loss"], optimizer) as scaled_loss:
scaled_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), grad_clip)
else:
# model optimizer step in mixed precision mode
scaler.scale(loss_dict["loss"]).backward()
# gradient accumulation
if step_optimizer:
if grad_clip > 0:
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(self.master_params(optimizer), grad_clip)
scale_prev = scaler.get_scale()
scaler.step(optimizer)
# update the scaler at the end of all the optimizer steps
if optimizer_idx is None or (optimizer_idx + 1 == num_optimizers):
scaler.update()
loss_dict["amp_scaler"] = scaler.get_scale() # for logging
update_lr_scheduler = scale_prev <= scaler.get_scale()
else:
self.callbacks.before_backward_pass(self, loss_dict)
# main model optimizer step
loss_dict["loss"].backward()
# gradient accumulation
if step_optimizer:
self.callbacks.before_gradient_clipping(self)
if grad_clip > 0:
grad_norm = torch.nn.utils.clip_grad_norm_(self.master_params(optimizer), grad_clip)
optimizer.step()
# pytorch skips the step when the norm is 0. So ignore the norm value when it is NaN
if isinstance(grad_norm, torch.Tensor) and (torch.isnan(grad_norm) or torch.isinf(grad_norm)):
grad_norm = 0
step_time = time.time() - step_start_time
# setup lr
if scheduler is not None and update_lr_scheduler and not self.config.scheduler_after_epoch and step_optimizer:
scheduler.step()
# detach losses for logging
loss_dict_detached = self._detach_loss_dict(loss_dict)
loss_dict_detached["loss"] = loss_dict_detached["loss"] * float(self.grad_accum_steps)
if optimizer_idx is not None:
loss_dict_detached[f"loss_{optimizer_idx}"] = loss_dict_detached.pop("loss")
if step_optimizer:
loss_dict_detached[f"grad_norm_{optimizer_idx}"] = grad_norm
else:
if step_optimizer:
loss_dict_detached["grad_norm"] = grad_norm
# zero-out optimizer
if step_optimizer:
optimizer.zero_grad()
return outputs, loss_dict_detached, step_time
def train_step(self, batch: Dict, batch_n_steps: int, step: int, loader_start_time: float) -> Tuple[Dict, Dict]:
"""Perform a training step on a batch of inputs and log the process.
Args:
batch (Dict): Input batch.
batch_n_steps (int): Number of steps needed to complete an epoch. Needed for logging.
step (int): Current step number in this epoch.
loader_start_time (float): The time when the data loading is started. Needed for logging.
Returns:
Tuple[Dict, Dict]: Model outputs and losses.
"""
self.callbacks.on_train_step_start(self)
# format data
batch = self.format_batch(batch)
loader_time = time.time() - loader_start_time
# conteainers to hold model outputs and losses for each optimizer.
outputs_per_optimizer = None
loss_dict = {}
# gradient accumulation
# TODO: grad accumulation for each optimizer
step_optimizer = True
if ((step + 1) % self.grad_accum_steps != 0) and (step + 1 != batch_n_steps):
step_optimizer = False
if not isinstance(self.optimizer, list):
# training with a single optimizer
outputs, loss_dict_new, step_time = self._optimize(
batch,
self.model,
self.optimizer,
self.scaler,
self.criterion,
self.scheduler,
self.config,
step_optimizer=step_optimizer,
num_optimizers=len(self.optimizer) if isinstance(self.optimizer, list) else 1,
)
loss_dict.update(loss_dict_new)
else:
# training with multiple optimizers (e.g. GAN)
outputs_per_optimizer = [None] * len(self.optimizer)
total_step_time = 0
for idx, optimizer in enumerate(self.optimizer):
criterion = self.criterion
# scaler = self.scaler[idx] if self.use_amp_scaler else None
scaler = self.scaler
scheduler = self.scheduler[idx]
outputs, loss_dict_new, step_time = self._optimize(
batch,
self.model,
optimizer,
scaler,
criterion,
scheduler,
self.config,
idx,
step_optimizer=step_optimizer,
)
# skip the rest if the model returns None
total_step_time += step_time
outputs_per_optimizer[idx] = outputs
# merge loss_dicts from each optimizer
# rename duplicates with the optimizer idx
# if None, model skipped this optimizer
if loss_dict_new is not None:
for k, v in loss_dict_new.items():
if k in loss_dict:
loss_dict[f"{k}-{idx}"] = v
else:
loss_dict[k] = v
step_time = total_step_time
outputs = outputs_per_optimizer
# clear any pesky gradients after gradient accumulation
if step_optimizer:
self.model.zero_grad()
# update avg runtime stats
keep_avg_update = {}
keep_avg_update["avg_loader_time"] = loader_time
keep_avg_update["avg_step_time"] = step_time
self.keep_avg_train.update_values(keep_avg_update)
# update avg loss stats
update_eval_values = {}
for key, value in loss_dict.items():
update_eval_values["avg_" + key] = value
self.keep_avg_train.update_values(update_eval_values)
# print training progress
if self.total_steps_done % self.config.print_step == 0:
# log learning rates
lrs = {}
if isinstance(self.optimizer, list):
for idx, optimizer in enumerate(self.optimizer):
current_lr = self.optimizer[idx].param_groups[0]["lr"]
lrs.update({f"current_lr_{idx}": current_lr})
else:
current_lr = self.optimizer.param_groups[0]["lr"]
lrs = {"current_lr": current_lr}
# log run-time stats
loss_dict.update(lrs)
loss_dict.update(
{
"step_time": round(step_time, 4),
"loader_time": round(loader_time, 4),
}
)
self.c_logger.print_train_step(
batch_n_steps,
step,
self.total_steps_done,
loss_dict,
self.keep_avg_train.avg_values,
)
if self.args.rank == 0:
# Plot Training Iter Stats
# reduce TB load and don't log every step
if self.total_steps_done % self.config.plot_step == 0:
self.dashboard_logger.train_step_stats(self.total_steps_done, loss_dict)
if self.total_steps_done % self.config.save_step == 0 and self.total_steps_done != 0:
if self.config.save_checkpoints:
# checkpoint the model
target_avg_loss = self._pick_target_avg_loss(self.keep_avg_train)
save_checkpoint(
self.config,
self.model,
self.optimizer,
self.scaler if self.use_amp_scaler else None,
self.total_steps_done,
self.epochs_done,
self.output_path,
model_loss=target_avg_loss,
save_n_checkpoints=self.config.save_n_checkpoints,
save_func=self.dashboard_logger.save_model,
)
if self.total_steps_done % self.config.log_model_step == 0:
# log checkpoint as artifact
aliases = [
f"epoch-{self.epochs_done}",
f"step-{self.total_steps_done}",
]
self.dashboard_logger.add_artifact(
file_or_dir=self.output_path, name="checkpoint", artifact_type="model", aliases=aliases
)
# training visualizations
if hasattr(self.model, "module") and hasattr(self.model.module, "train_log"):
self.model.module.train_log(
batch,
outputs,
self.dashboard_logger,
self.training_assets,
self.total_steps_done,
)
elif hasattr(self.model, "train_log"):
self.model.train_log(
batch,
outputs,
self.dashboard_logger,
self.training_assets,
self.total_steps_done,
)
self.dashboard_logger.flush(step=step)
self.total_steps_done += 1
self.callbacks.on_train_step_end(self)
return outputs, loss_dict
def train_epoch(self, epoch) -> None:
"""Main entry point for the training loop. Run training on the all training samples."""
# initialize the data loader
self.train_loader = self.get_train_dataloader(
self.training_assets,
self.train_samples,
verbose=True,
)
# set model to training mode
if self.num_gpus > 1:
self.model.module.train()
else:
self.model.train()
epoch_start_time = time.time()
self.c_logger.print_train_start()
loader_start_time = time.time()
# TRAINING EPOCH -> iterate over the training samples
batch_num_steps = len(self.train_loader)
for cur_step, batch in enumerate(self.train_loader):
_, _ = self.train_step(batch, batch_num_steps, cur_step, loader_start_time)
loader_start_time = time.time()
epoch_time = time.time() - epoch_start_time
# scheduler step
if self.scheduler is not None and self.config.scheduler_after_epoch:
if isinstance(self.scheduler, list):
for scheduler in self.scheduler:
if scheduler is not None:
scheduler.step()
else:
self.scheduler.step()
# plot self.epochs_done Stats
if self.args.rank == 0:
epoch_stats = {"epoch_time": epoch_time, "epoch":epoch}
epoch_stats.update(self.keep_avg_train.avg_values)
self.dashboard_logger.train_epoch_stats(self.total_steps_done, epoch_stats)
if self.config.model_param_stats:
self.dashboard_logger.model_weights(self.model, self.total_steps_done)
#######################
# EVAL FUNCTIONS
#######################
@staticmethod
def _model_eval_step(
batch: Dict, model: nn.Module, criterion: nn.Module, optimizer_idx: int = None
) -> Tuple[Dict, Dict]:
"""
Perform a evaluation forward pass. Compute model outputs and losses with no gradients.
Args:
batch (Dict): IBatch of inputs.
model (nn.Module): Model to call evaluation.
criterion (nn.Module): Model criterion.
optimizer_idx (int, optional): Optimizer ID to define the closure in multi-optimizer training. Defaults to None.
Returns:
Tuple[Dict, Dict]: model outputs and losses.
"""
input_args = [batch, criterion]
if optimizer_idx is not None:
input_args.append(optimizer_idx)
if hasattr(model, "module"):
return model.module.eval_step(*input_args)
return model.eval_step(*input_args)
def eval_step(self, batch: Dict, step: int) -> Tuple[Dict, Dict]:
"""Perform a evaluation step on a batch of inputs and log the process.
Args:
batch (Dict): Input batch.
step (int): Current step number in this epoch.
Returns:
Tuple[Dict, Dict]: Model outputs and losses.
"""
with torch.no_grad():
outputs = []
loss_dict = {}
if not isinstance(self.optimizer, list):
outputs, loss_dict = self._model_eval_step(batch, self.model, self.criterion)
else:
outputs = [None] * len(self.optimizer)
for idx, _ in enumerate(self.optimizer):
criterion = self.criterion
outputs_, loss_dict_new = self._model_eval_step(batch, self.model, criterion, idx)
outputs[idx] = outputs_
if loss_dict_new:
loss_dict_new[f"loss_{idx}"] = loss_dict_new.pop("loss")
loss_dict.update(loss_dict_new)
loss_dict = self._detach_loss_dict(loss_dict)
# update avg stats
update_eval_values = {}
for key, value in loss_dict.items():
update_eval_values["avg_" + key] = value
self.keep_avg_eval.update_values(update_eval_values)
if self.config.print_eval:
self.c_logger.print_eval_step(step, loss_dict, self.keep_avg_eval.avg_values)
return outputs, loss_dict
def eval_epoch(self) -> None:
"""Main entry point for the evaluation loop. Run evaluation on the all validation samples."""
self.eval_loader = (
self.get_eval_dataloader(
self.training_assets,
self.eval_samples,
verbose=True,
)
if self.config.run_eval
else None
)
self.model.eval()
self.c_logger.print_eval_start()
loader_start_time = time.time()
batch = None
for cur_step, batch in enumerate(self.eval_loader):
# format data
batch = self.format_batch(batch)
loader_time = time.time() - loader_start_time
self.keep_avg_eval.update_values({"avg_loader_time": loader_time})
outputs, _ = self.eval_step(batch, cur_step)
loader_start_time = time.time()
# plot epoch stats, artifacts and figures
if self.args.rank == 0:
if hasattr(self.model, "module") and hasattr(self.model.module, "eval_log"):
self.model.module.eval_log(
batch,
outputs,
self.dashboard_logger,
self.training_assets,
self.total_steps_done,
)
elif hasattr(self.model, "eval_log"):
self.model.eval_log(
batch,
outputs,
self.dashboard_logger,
self.training_assets,
self.total_steps_done,
)
self.dashboard_logger.eval_stats(self.total_steps_done, self.keep_avg_eval.avg_values)
##################################
# TESTING
##################################
def test_run(self) -> None:
"""Run model test.
Test run is expected to pass over test samples and produce logging artifacts.
If ```model.test_run()``` is defined, it will be called and it is expected to set and execute everything
in the model.
Else if ```mode.test()``` is defined, it will be called and it takes an test data loader as an argument
and iterate over it.
"""
self.model.eval()
test_outputs = None
if hasattr(self.model, "test_run") or (self.num_gpus > 1 and hasattr(self.model.module, "test_run")):
# handle everything in ```model.test_run()`
if self.num_gpus > 1:
test_outputs = self.model.module.test_run(self.training_assets)
else:
test_outputs = self.model.test_run(self.training_assets)
elif hasattr(self.model, "test") or (self.num_gpus > 1 and hasattr(self.model.module, "test")):
self.test_loader = self.get_test_dataloader(
self.training_assets,
self.test_samples if self.test_samples else self.eval_samples,
verbose=True,
)
# use test_loader to load test samples
if self.num_gpus > 1:
test_outputs = self.model.module.test(self.training_assets, self.test_loader, None)
else:
test_outputs = self.model.test(self.training_assets, self.test_loader, None)
if hasattr(self.model, "test_log"):
self.model.test_log(test_outputs, self.dashboard_logger, self.training_assets, self.total_steps_done)
elif (self.num_gpus > 1 and hasattr(self.model.module, "test_log")):
self.model.module.test_log(test_outputs, self.dashboard_logger, self.training_assets, self.total_steps_done)
def _restore_best_loss(self):
"""Restore the best loss from the args.best_path if provided else
from the model (`args.restore_path` or `args.continue_path`) used for resuming the training"""
if self.restore_step != 0 or self.args.best_path:
logger.info(" > Restoring best loss from %s ...", os.path.basename(self.args.best_path))
ch = load_fsspec(self.args.restore_path, map_location="cpu")
if "model_loss" in ch:
self.best_loss = ch["model_loss"]
logger.info(" > Starting with loaded last best loss %f", self.best_loss)
def test(self, model=None, test_samples=None) -> None:
"""Run evaluation steps on the test data split. You can either provide the model and the test samples
explicitly or the trainer use values from the initialization.
Args:
model (nn.Module, optional): Model to use for testing. If None, use the model given in the initialization.
Defaults to None.
test_samples (List[str], optional): List of test samples to use for testing. If None, use the test samples
given in the initialization. Defaults to None.
"""
logger.info(" > USING TEST SET...")
self.keep_avg_eval = KeepAverage()
if model is not None:
self.model = model
eval_samples_cache = self.eval_samples
if test_samples is not None:
self.eval_samples = test_samples
else:
self.eval_samples = self.test_samples
self.eval_epoch()
self.c_logger.print_epoch_end(self.epochs_done, self.keep_avg_eval.avg_values)
self.eval_samples = eval_samples_cache
###################################
# FIT FUNCTIONS
###################################
def _fit(self) -> None:
"""🏃 train -> evaluate -> test for the number of epochs."""
self._restore_best_loss()
self.total_steps_done = self.restore_step
for epoch in range(0, self.config.epochs):
if self.num_gpus > 1:
# let all processes sync up before starting with a new epoch of training
dist.barrier()
self.callbacks.on_epoch_start(self)
self.keep_avg_train = KeepAverage()
self.keep_avg_eval = KeepAverage() if self.config.run_eval else None
self.epochs_done = epoch
self.c_logger.print_epoch_start(epoch, self.config.epochs, self.output_path)
if not self.skip_train_epoch:
self.train_epoch(epoch)
if self.config.run_eval:
self.eval_epoch()
if epoch >= self.config.test_delay_epochs and self.args.rank <= 0:
self.test_run()
self.c_logger.print_epoch_end(
epoch,
self.keep_avg_eval.avg_values if self.config.run_eval else self.keep_avg_train.avg_values,
)
if self.args.rank in [None, 0]:
self.save_best_model()
self.callbacks.on_epoch_end(self)
def fit(self) -> None:
"""Where the ✨️magic✨️ happens..."""
try:
self._fit()
if self.args.rank == 0:
self.dashboard_logger.finish()
except KeyboardInterrupt:
self.callbacks.on_keyboard_interrupt(self)
# if the output folder is empty remove the run.
remove_experiment_folder(self.output_path)
# clear the DDP processes
if self.num_gpus > 1:
dist.destroy_process_group()
# finish the wandb run and sync data
if self.args.rank == 0:
self.dashboard_logger.finish()
# stop without error signal
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except BaseException: # pylint: disable=broad-except
remove_experiment_folder(self.output_path)
traceback.print_exc()
sys.exit(1)
def profile_fit(self, torch_profiler, epochs=None, small_run=None):
"""Run training under the torch profiler.
Example::
Run torch profiler to profile CPU, GPU and memory usage with Tensorboard logging.
>>> import torch
>>> profiler = torch.profiler.profile(
>>> activities=[
>>> torch.profiler.ProfilerActivity.CPU,
>>> torch.profiler.ProfilerActivity.CUDA,
>>> ],
>>> schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
>>> on_trace_ready=torch.profiler.tensorboard_trace_handler("./profiler/"),
>>> record_shapes=True,
>>> profile_memory=True,
>>> with_stack=True,
>>> )
>>> prof = trainer.profile_fit(profiler, epochs=1, small_run=64)
"""
self.dashboard_logger = DummyLogger()
# train the model for a custom number of epochs
if epochs:
self.config.epocshs = epochs
# use a smaller set of training samples for profiling
if small_run:
self.config.small_run = small_run
# run profiler
self.config.run_eval = False
self.config.test_delay_epochs = 9999999
self.config.epochs = epochs
# set a callback to progress the profiler
self.callbacks_on_train_step_end = [lambda trainer: trainer.torch_profiler.step()] # pylint: disable=attribute-defined-outside-init
# set the profiler to access in the Trainer
self.torch_profiler = torch_profiler # pylint: disable=attribute-defined-outside-init
# set logger output for Tensorboard
# self.torch_profiler.on_trace_ready = torch.profiler.tensorboard_trace_handler(self.output_path)
self.torch_profiler.start()
self.fit()
self.torch_profiler.stop()
return self.torch_profiler
def save_best_model(self) -> None:
"""Save the best model. It only saves if the current target loss is smaller then the previous."""
# set the target loss to choose the best model
target_loss_dict = self._pick_target_avg_loss(self.keep_avg_eval if self.keep_avg_eval else self.keep_avg_train)
# save the model and update the best_loss
self.best_loss = save_best_model(
target_loss_dict,
self.best_loss,
self.config,
self.model,
self.optimizer,
self.scaler if self.use_amp_scaler else None,
self.total_steps_done,
self.epochs_done,
self.output_path,
keep_all_best=self.config.save_all_best,
keep_after=self.config.save_best_after,
save_func=self.dashboard_logger.save_model,
)
#####################
# GET FUNCTIONS
#####################
@staticmethod
def get_optimizer(model: nn.Module, config: Coqpit) -> Union[torch.optim.Optimizer, List]:
"""Receive the optimizer from the model if model implements `get_optimizer()` else
check the optimizer parameters in the config and try initiating the optimizer.
Args:
model (nn.Module): Training model.
config (Coqpit): Training configuration.
Returns:
Union[torch.optim.Optimizer, List]: A optimizer or a list of optimizers. GAN models define a list.
"""
optimizer = None
if hasattr(model, "get_optimizer"):
try:
optimizer = model.get_optimizer()
except NotImplementedError:
optimizer = None
if optimizer is None:
optimizer_name = config.optimizer
optimizer_params = {} if config.optimizer_params is None else config.optimizer_params
return get_optimizer(optimizer_name, optimizer_params, config.lr, model)
return optimizer
@staticmethod
def get_lr(model: nn.Module, config: Coqpit) -> Union[float, List[float]]:
"""Set the initial learning rate by the model if model implements `get_lr()` else try setting the learning rate
fromthe config.
Args:
model (nn.Module): Training model.
config (Coqpit): Training configuration.
Returns:
Union[float, List[float]]: A single learning rate or a list of learning rates, one for each optimzier.
"""
lr = None
if hasattr(model, "get_lr"):
try:
lr = model.get_lr()
except NotImplementedError:
lr = None
if lr is None:
lr = config.lr
return lr
@staticmethod
def get_scheduler(
model: nn.Module, config: Coqpit, optimizer: Union[torch.optim.Optimizer, List]
) -> Union[torch.optim.lr_scheduler._LRScheduler, List]: # pylint: disable=protected-access
"""Receive the scheduler from the model if model implements `get_scheduler()` else
check the config and try initiating the scheduler.
Args:
model (nn.Module): Training model.
config (Coqpit): Training configuration.
Returns:
Union[torch.optim.Optimizer, List]: A scheduler or a list of schedulers, one for each optimizer.
"""
scheduler = None
if hasattr(model, "get_scheduler"):
try:
scheduler = model.get_scheduler(optimizer)
except NotImplementedError:
scheduler = None
if scheduler is None:
if isinstance(optimizer, list):
lr_schedulers = []
for idx, opt in enumerate(optimizer):
if config.lr_scheduler_aligner:
if idx == 1:
lr_scheduler = get_scheduler(config.lr_scheduler_aligner, config.lr_scheduler_aligner_params, opt)
lr_schedulers.append(lr_scheduler)
else:
lr_scheduler = get_scheduler(config.lr_scheduler, config.lr_scheduler_params, opt)
lr_schedulers.append(lr_scheduler)
else:
raise ValueError()
return lr_schedulers
else:
lr_scheduler = config.lr_scheduler
lr_scheduler_params = config.lr_scheduler_params
return get_scheduler(lr_scheduler, lr_scheduler_params, optimizer)
return scheduler
@staticmethod
def restore_scheduler(
scheduler: Union["Scheduler", List], args: Coqpit, config: Coqpit, restore_epoch: int, restore_step: int
) -> Union["Scheduler", List]:
"""Restore scheduler wrt restored model."""
if scheduler is not None: # pylint: disable=too-many-nested-blocks
if args.continue_path:
if isinstance(scheduler, list):
for s in scheduler:
if s is not None:
if config.scheduler_after_epoch:
s.last_epoch = restore_epoch
else:
s.last_epoch = restore_step
else:
if config.scheduler_after_epoch:
scheduler.last_epoch = restore_epoch
else:
scheduler.last_epoch = restore_step
return scheduler
@staticmethod
def get_criterion(model: nn.Module) -> nn.Module:
"""Receive the criterion from the model. Model must implement `get_criterion()`.
Args:
model (nn.Module): Training model.
Returns:
nn.Module: Criterion layer.
"""
criterion = None
criterion = model.get_criterion()
return criterion
####################
# HELPER FUNCTIONS
####################
@staticmethod
def _detach_loss_dict(loss_dict: Dict) -> Dict:
"""Detach loss values from autograp.
Args:
loss_dict (Dict): losses.
Returns:
Dict: losses detached from autograph.
"""
loss_dict_detached = {}
for key, value in loss_dict.items():
if isinstance(value, (int, float)):
loss_dict_detached[key] = value
else:
loss_dict_detached[key] = value.detach().clone()
return loss_dict_detached
def _pick_target_avg_loss(self, keep_avg_target: KeepAverage) -> Dict:
"""Pick the target loss to compare models"""
target_avg_loss = None
# return if target loss defined in the model config
if "target_loss" in self.config and self.config.target_loss:
return keep_avg_target[f"avg_{self.config.target_loss}"]
# take the average of loss_{optimizer_idx} as the target loss when there are multiple optimizers
if isinstance(self.optimizer, list):
target_avg_loss = 0
for idx in range(len(self.optimizer)):
target_avg_loss += keep_avg_target[f"avg_loss_{idx}"]
target_avg_loss /= len(self.optimizer)
else:
target_avg_loss = keep_avg_target["avg_loss"]
return target_avg_loss
def _setup_logger_config(self, log_file: str) -> None:
"""Set up the logger based on the process rank in DDP."""
logger_new = logging.getLogger("trainer")
handler = logging.FileHandler(log_file, mode="a")
fmt = logging.Formatter("")
handler.setFormatter(fmt)
logger_new.addHandler(handler)
# only log to a file if rank > 0 in DDP
if self.args.rank > 0:
logger_new.handlers = [h for h in logger_new.handlers if not isinstance(h, logging.StreamHandler)]
@staticmethod
def _is_apex_available() -> bool:
"""Check if Nvidia's APEX is available."""
return importlib.util.find_spec("apex") is not None
|