import datetime import logging from dataclasses import dataclass logger = logging.getLogger("trainer") @dataclass(frozen=True) class tcolors: OKBLUE: str = "\033[94m" HEADER: str = "\033[95m" OKGREEN: str = "\033[92m" WARNING: str = "\033[93m" FAIL: str = "\033[91m" ENDC: str = "\033[0m" BOLD: str = "\033[1m" UNDERLINE: str = "\033[4m" class ConsoleLogger: def __init__(self): # TODO: color code for value changes # use these to compare values between iterations self.old_train_loss_dict = None self.old_epoch_loss_dict = None self.old_eval_loss_dict = None @staticmethod def log_with_flush(msg: str): if logger is not None: logger.info(msg) for handler in logger.handlers: handler.flush() else: print(msg, flush=True) # pylint: disable=no-self-use def get_time(self): now = datetime.datetime.now() return now.strftime("%Y-%m-%d %H:%M:%S") def print_epoch_start(self, epoch, max_epoch, output_path=None): self.log_with_flush( "\n{}{} > EPOCH: {}/{}{}".format(tcolors.UNDERLINE, tcolors.BOLD, epoch, max_epoch, tcolors.ENDC), ) if output_path is not None: self.log_with_flush(f" --> {output_path}") def print_train_start(self): self.log_with_flush(f"\n{tcolors.BOLD} > TRAINING ({self.get_time()}) {tcolors.ENDC}") def print_train_step(self, batch_steps, step, global_step, loss_dict, avg_loss_dict): indent = " | > " self.log_with_flush("") log_text = "{} --> STEP: {}/{} -- GLOBAL_STEP: {}{}\n".format( tcolors.BOLD, step, batch_steps, global_step, tcolors.ENDC ) for key, value in loss_dict.items(): # print the avg value if given if f"avg_{key}" in avg_loss_dict.keys(): log_text += "{}{}: {:.5f} ({:.5f})\n".format(indent, key, value, avg_loss_dict[f"avg_{key}"]) else: log_text += "{}{}: {:.5f} \n".format(indent, key, value) self.log_with_flush(log_text) # pylint: disable=unused-argument def print_train_epoch_end(self, global_step, epoch, epoch_time, print_dict): indent = " | > " log_text = f"\n{tcolors.BOLD} --> TRAIN PERFORMACE -- EPOCH TIME: {epoch_time:.2f} sec -- GLOBAL_STEP: {global_step}{tcolors.ENDC}\n" for key, value in print_dict.items(): log_text += "{}{}: {:.5f}\n".format(indent, key, value) self.log_with_flush(log_text) def print_eval_start(self): self.log_with_flush(f"\n{tcolors.BOLD} > EVALUATION {tcolors.ENDC}\n") def print_eval_step(self, step, loss_dict, avg_loss_dict): indent = " | > " log_text = f"{tcolors.BOLD} --> STEP: {step}{tcolors.ENDC}\n" for key, value in loss_dict.items(): # print the avg value if given if f"avg_{key}" in avg_loss_dict.keys(): log_text += "{}{}: {:.5f} ({:.5f})\n".format(indent, key, value, avg_loss_dict[f"avg_{key}"]) else: log_text += "{}{}: {:.5f} \n".format(indent, key, value) self.log_with_flush(log_text) def print_epoch_end(self, epoch, avg_loss_dict): indent = " | > " log_text = "\n {}--> EVAL PERFORMANCE{}\n".format(tcolors.BOLD, tcolors.ENDC) for key, value in avg_loss_dict.items(): # print the avg value if given color = "" sign = "+" diff = 0 if self.old_eval_loss_dict is not None and key in self.old_eval_loss_dict: diff = value - self.old_eval_loss_dict[key] if diff < 0: color = tcolors.OKGREEN sign = "" elif diff > 0: color = tcolors.FAIL sign = "+" log_text += "{}{}:{} {:.5f} {}({}{:.5f})\n".format(indent, key, color, value, tcolors.ENDC, sign, diff) self.old_eval_loss_dict = avg_loss_dict self.log_with_flush(log_text)