Spaces:
Running
Running
File size: 11,636 Bytes
3490a23 31299b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from dash import html, dcc, callback, Input, Output, State
import dash_mantine_components as dmc
import plotly.express as px
import pandas as pd
import glob
import json
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.figure_factory as ff
from collections import Counter
import numpy as np
import re
from wordcloud import WordCloud
import networkx as nx
import matplotlib.pyplot as plt
import base64
from io import BytesIO
import textwrap
def readExcel(data):
return pd.read_excel(data)
def datatomultiplerowswithoutcomment(df, column_name, sep=', '):
df_rows = df.copy()
df_rows[column_name] = df_rows[column_name].str.split(sep)
df_rows = df_rows.explode(column_name)
df_rows = df_rows[df_rows[column_name] != '']
df_rows[column_name] = df_rows[column_name].apply(lambda x: str(x).split(' (')).apply(lambda x: x[0])
return df_rows
def barplotmonovariablecount(df, column_name, title):
df_monovariablecount = df.groupby(column_name).size().reset_index(name='obs')
df_monovariablecount = df_monovariablecount.sort_values(by=['obs'])
fig_monovariablecount = px.bar(df_monovariablecount, x='obs', y=column_name, width=800, height=400, orientation='h', color='obs', template="plotly_dark",title=title, labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(paper_bgcolor="#060621",font=dict(size=10,color="#ffffff"),autosize=True, coloraxis_showscale=False).update_traces(hovertemplate=df_monovariablecount[column_name] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_monovariablecount[column_name]], showlegend=False)
return fig_monovariablecount
def barplotbivariablecount(df, column_name1, column_name2, title):
df_bivariablecount = df.groupby([column_name1, column_name2]).size().reset_index(name='obs')
df_bivariablecount = df_bivariablecount.sort_values(by=['obs'])
fig_bivariablecount = px.bar(df_bivariablecount, y=column_name1, x='obs', orientation='h', width=800, height=400, color=column_name2, template="plotly_dark", title=title, labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=10,color="#ffffff"),paper_bgcolor="#060621",autosize=True, coloraxis_showscale=False)
return fig_bivariablecount
def multiwordcloud(df):
exclure_mots = ['ue', 'précisez', 'd', 'du', 'de', 'la', 'las', 'des', 'le', 'et', 'est', 'elle', 'une', 'en', 'que', 'aux', 'qui', 'ces', 'les', 'dans', 'sur', 'l', 'un', 'pour', 'par', 'il', 'ou', 'à', 'ce', 'a', 'sont', 'cas', 'plus', 'leur', 'se', 's', 'vous', 'au', 'c', 'aussi', 'toutes', 'autre', 'comme']
countFigure = 1
thematiques = ['Durable','Résilient','Sûr','Inclusive']
figures_list = []
for thematique in thematiques:
fig = plt.figure(countFigure,figsize=(10,12),facecolor="#060621")
count=1
diplomes = ['BUT','Licence','Licence professionnelle','Master']
for diplome in diplomes:
df_test = df[(df['Thématiques ODD11'] == thematique) & (df['Diplôme'] == diplome)]
list_test = df_test["Référence et intitulé de l'UE"].tolist()
words=". ".join(list_test)
words = words.lower()
words=words.replace(r'[-./?!,":;()\']',' ')
if words:
wordcloud = WordCloud(background_color='#ffffff', stopwords=exclure_mots, max_words=100).generate(words)
if count <= 2:
plt.subplot(1,2,count)
else:
plt.subplot(2,2,count)
plt.imshow(wordcloud,interpolation="bilinear")
plt.axis('off')
plt.title(thematique + ' - ' + diplome,fontdict={'fontsize':'medium','color':'#ffffff'})
count = count + 1
# Save it to a temporary buffer.
buf = BytesIO()
fig.savefig(buf, format="png")
# Embed the result in the html output.
fig_data = base64.b64encode(buf.getbuffer()).decode("ascii")
figures_list.append(f'data:image/png;base64,{fig_data}')
countFigure = countFigure + 1
return figures_list
def matrixlist(df):
list_thematique = df["Intitulé"].values.tolist()
#list_thematique = sorted(list_thematique)
list_thematique = list(set(list_thematique))
matrix = pd.DataFrame(0, index=list_thematique, columns=['Durable','Inclusive','Sûr','Résilient'])
for formation in list_thematique:
for thematique in ['Durable','Inclusive','Sûr','Résilient']:
df_test = df[df['Thématiques ODD11'] == thematique]
if formation in df_test.values :
matrix.loc[formation, thematique] = 1 # Replace with actual condition logic
return matrix
def matrixcorrelation(matrix,df):
list = df["Intitulé"].values.tolist()
fig = go.Figure(data=go.Heatmap(
z=matrix.values,
x=matrix.columns,
y=matrix.index,
colorscale=[
[0, 'rgba(6,6,33,1)'],
[0.2, 'rgba(6,6,33,1)'],
[0.2, '#FF69B4'], # Rose pour technique
[0.4, '#FF69B4'],
[0.4, '#4169E1'], # Bleu pour management
[0.6, '#4169E1'],
[0.6, '#32CD32'], # Vert pour environnement
[0.8, '#32CD32'],
[0.8, '#FFD700'], # Jaune pour économie
[1.0, '#32CD32']
],
showscale=False,
))
# Ajout des bordures aux cellules
fig.update_traces(
xgap=1,
ygap=1,
)
# Mise en forme
fig.update_layout(
title='Matrice des thématiques ODD11<br>par formation',
xaxis=dict(
side='top',
tickangle=45,
tickfont=dict(size=10),
),
yaxis=dict(
autorange='reversed',
tickfont=dict(size=10),
),
width=1200,
#height=300,
height=len(list) * 20,
template='plotly_dark',
paper_bgcolor = 'rgba(6,6,33,1)',
plot_bgcolor='rgba(6,6,33,1)',
margin=dict(
t=100,
l=300,
r=100,
b=50
),
#annotations=annotations,
hovermode="x unified",hoverlabel=dict(
bgcolor='rgba(8,8,74,1)',
font_size=10,
)
)
# Personnalisation du style des axes
fig.update_xaxes(
#showspikes=True,
showgrid=True,
gridwidth=1,
gridcolor='lightgrey',
)
fig.update_yaxes(
#showspikes=True,
showgrid=True,
gridwidth=1,
gridcolor='lightgrey',
)
# Ajout d'un hover template personnalisé
hover_text = []
df_info = df[["Thématiques ODD11","Référence et intitulé de l'UE","Pratiques pédagogiques","Intitulé"]].copy()
#df_info = df_info.drop_duplicates(subset=['Thématiques ODD11'])
df_info.set_index("Thématiques ODD11", inplace=True)
for idx in matrix.index:
row = []
for col in matrix.columns:
if matrix.loc[idx,col] == 1:
#df_psycho = df_score[(df_score['Thématiques Pedago'].str.contains(row['Thématiques Pedago'])) & (df_score['labStructName_s'] == row['labStructName_s'])]
df_extract = df_info.loc[col]
df_test = df_extract[df_extract["Intitulé"] == idx]
ue = df_test["Référence et intitulé de l'UE"].values.tolist()[0]
pedagogie = df_test["Pratiques pédagogiques"].values.tolist()[0]
label_y = idx
row.append(
f'<b>💼 Formation: {"<br>".join(textwrap.wrap(label_y,width=70))}</b><br>' +
f'<b>📣 Thématique ODD11: {col.capitalize()}</b><br><br>' +
f'💡 Référence et intitulé de l\'UE : {"<br>".join(textwrap.wrap(ue,width=80))}<br><br>' +
f'📚 Pratiques pédagogiques: <br>' + str(pedagogie) + '<br><br>'
)
else:
row.append('')
hover_text.append(row)
fig.update_traces(
hovertemplate="%{customdata}<extra></extra>",
customdata=hover_text,
#y=[y[0:-10].replace('(','') if y.find('(essential)')!=-1 or y.find('(optional)')!=-1 else y for y in color_values.index]
)
return fig
def create_analysis_page(title, label, data):
# This is dummy data for the bar chart
df = readExcel(data)
if label == "Analyse ODD 11 formation":
df_figure = datatomultiplerowswithoutcomment(df, 'Thématiques ODD11', sep=', ')
fig1 = barplotmonovariablecount(df_figure, f'Thématiques ODD11', f"Répartition des thématiques ODD11")
fig2 = barplotbivariablecount(df_figure, f'Thématiques ODD11', f'Diplôme', f"Répartition des thématiques ODD11 par type diplôme")
fig3 = multiwordcloud(df_figure)
fig4 = matrixcorrelation(matrixlist(df_figure),df_figure)
else:
fig1 = go.Figure()
fig1.add_annotation(text="Aucun fichier de données fourni pour cette analyse.", xref="paper", yref="paper", showarrow=False, font=dict(size=20))
fig2 = go.Figure()
fig2.add_annotation(text="Aucun fichier de données fourni pour cette analyse.", xref="paper", yref="paper", showarrow=False, font=dict(size=20))
fig3 = plt.Figure()
buf = BytesIO()
fig3.savefig(buf, format="png")
fig_data = base64.b64encode(buf.getbuffer()).decode("ascii")
fig3 = f'data:image/png;base64,{fig_data}'
fig4 = go.Figure()
fig4.add_annotation(text="Aucun fichier de données fourni pour cette analyse.", xref="paper", yref="paper", showarrow=False, font=dict(size=20))
#return dmc.Container(
return dmc.Container(
[
dmc.Title(title, order=2, mb="lg"),
dmc.Grid(
[
dmc.GridCol(dcc.Loading(dcc.Graph(figure=fig1)), span=12),
dmc.GridCol(dcc.Loading(dcc.Graph(figure=fig2)), span=12),
dmc.GridCol(dcc.Loading(dcc.Graph(figure=fig4)), span=12),
dmc.GridCol(
[
dcc.Loading(html.Img(src=fig3[0], style={'width':'100%', 'height':'auto','padding':'0px','margin-top':'-300px'}),
),
dcc.Loading(html.Img(src=fig3[1], style={'width':'100%', 'height':'auto','padding':'0px','margin-top':'-200px'}),
),
dcc.Loading(html.Img(src=fig3[2], style={'width':'100%', 'height':'auto','padding':'0px','margin-top':'-200px'}),
),
dcc.Loading(html.Img(src=fig3[3], style={'width':'100%', 'height':'auto','padding':'0px','margin-top':'-200px'}),),
],
span=12),
#dmc.GridCol(
# [
# dmc.Title("Résumé de l'analyse", order=3),
# dmc.Text(
# "Génération de la note de synthèse en temps réel...",
# id="summary-note",
# ),
# ],
# span=4,
#),
]
),
],
fluid=True,
p="lg",
pt="xl"
) |