import transformers import re from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM from vllm import LLM, SamplingParams import torch import gradio as gr import json import os import shutil import requests import lancedb import pandas as pd # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" # Define variables temperature = 0.6 max_new_tokens = 3000 top_p = 0.95 repetition_penalty = 1.2 model_name = "dataesr/" # Initialize vLLM llm = LLM(model_name, max_model_len=8128) # Connect to the LanceDB database db = lancedb.connect("base/lancedb_data") table = db.open_table("abstractsC") def hybrid_search(text): results = table.search(text, query_type="hybrid").limit(5).to_pandas() # Add a check for duplicate hashes seen_hashes = set() document = [] document_html = [] for _, row in results.iterrows(): hash_id = str(row['hash']) # Skip if we've already seen this hash if hash_id in seen_hashes: continue seen_hashes.add(hash_id) title = row['hash'] content = row['text'] document.append(f"**{hash_id}**\n{title}\n{content}") document_html.append(f'

{hash_id} : {title}
{content}

') document = "\n".join(document) document_html = '
' + "".join(document_html) + "
" return document, document_html class ESRChatBot: def __init__(self, system_prompt="Tu es ESR, le chatbot qui donne des réponses sourcées."): self.system_prompt = system_prompt def predict(self, user_message): fiches, fiches_html = hybrid_search(user_message) sampling_params = SamplingParams(temperature=temperature, top_p=top_p, max_tokens=max_new_tokens, presence_penalty=repetition_penalty, stop=["#END#"]) detailed_prompt = f"""### Query ###\n{user_message}\n\n### Source ###\n{fiches}\n\n### Answer ###\n""" prompts = [detailed_prompt] outputs = llm.generate(prompts, sampling_params, use_tqdm=False) generated_text = outputs[0].outputs[0].text generated_text = '

Réponse

\n
' + format_references(generated_text) + "
" fiches_html = '

Sources

\n' + fiches_html return generated_text, fiches_html def format_references(text): ref_start_marker = '', start_pos) if end_pos == -1: break ref_text = text[start_pos + len(ref_start_marker):end_pos].replace('\n', ' ').strip() ref_text_encoded = ref_text.replace("&", "&").replace("<", "<").replace(">", ">") ref_end_pos = text.find(ref_end_marker, end_pos) if ref_end_pos == -1: break ref_id = text[end_pos + 2:ref_end_pos].strip() tooltip_html = f'[{ref_number}]' parts.append(tooltip_html) current_pos = ref_end_pos + len(ref_end_marker) ref_number = ref_number + 1 return ''.join(parts) # Initialize the ESRChatBot ESR_bot = ESRChatBot() # CSS for styling css = """ .generation { margin-left:2em; margin-right:2em; } :target { background-color: #CCF3DF; } .source { float:left; max-width:17%; margin-left:2%; } .tooltip { position: relative; cursor: pointer; font-variant-position: super; color: #97999b; } .tooltip:hover::after { content: attr(data-text); position: absolute; left: 0; top: 120%; white-space: pre-wrap; width: 500px; max-width: 500px; z-index: 1; background-color: #f9f9f9; color: #000; border: 1px solid #ddd; border-radius: 5px; padding: 5px; display: block; box-shadow: 0 4px 8px rgba(0,0,0,0.1); } """ # Gradio interface def gradio_interface(user_message): response, sources = ESR_bot.predict(user_message) return response, sources # Create Gradio app demo = gr.Blocks(css=css) with demo: gr.HTML("""

ESR

""") with gr.Row(): with gr.Column(scale=2): text_input = gr.Textbox(label="Votre question ou votre instruction", lines=3) text_button = gr.Button("Interroger ESR") with gr.Column(scale=3): text_output = gr.HTML(label="La réponse de ESR") with gr.Row(): embedding_output = gr.HTML(label="Les sources utilisées") text_button.click(gradio_interface, inputs=text_input, outputs=[text_output, embedding_output]) # Launch the app if __name__ == "__main__": demo.launch()