File size: 15,883 Bytes
20720f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5759a
 
 
20720f9
 
 
 
0b5759a
20720f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5759a
20720f9
 
 
 
 
79f2e8b
20720f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5759a
 
 
 
 
 
 
 
20720f9
0b5759a
 
 
 
 
 
 
20720f9
 
 
 
 
 
 
 
 
 
 
 
 
 
cedd895
20720f9
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import os
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
from typing import TypedDict, List
from typing_extensions import Annotated
from dotenv import load_dotenv
import numpy as np

load_dotenv()
api_key = os.getenv('GROQ_API_KEY')

class AssessmentOutput(TypedDict):
    stress_management: Annotated[float, "Percentage score (0-100) for Stress Management KPI"]
    motivation: Annotated[float, "Percentage score (0-100) for Motivation KPI"]
    restless_night_score: Annotated[float, "Percentage score (0-100) for Restless Night Score KPI"]
    anxiety_level: Annotated[float, "Percentage score (0-100) for Anxiety Level KPI"]
    burnout_level: Annotated[float, "Percentage score (0-100) for Burnout Level KPI"]
    physical_fitness_score: Annotated[float, "Percentage score (0-100) for Physical Fitness KPI"]
    dietary_habit_score: Annotated[float, "Percentage score (0-100) for Diet & Nutrition KPI"]
    focus_score: Annotated[float, "Percentage score (0-100) for Cognitive Performance and Focus KPI"]
    overall_wellness_score: Annotated[float, "Percentage score (0-100) based on all the individual KPIs"]
    package: Annotated[List[str], "List of recommended packages. Options include 'Focus', 'Fitness', and 'Insomnia'. The recommendation can be a single package, a combination of packages, or all three packages based on the assessment."]
    report: Annotated[str, "A detailed summary report of the assessment results and recommendations based on the KPI analysis."]

template = """
You are an AI wellness assessment system designed to evaluate users' well-being and provide personalized insights. This assessment system analyzes responses and generates wellness reports, recommending specific services and packages from *DailyWellnessAI* to help users improve their mental and physical health. While this system itself is not called *DailyWellnessAI*, all recommendations are part of the *DailyWellnessAI* platform.

Based on the user's responses to the following 15 questions, along with their personal details (Age, Gender, Height, Weight), predict the following KPIs as percentages out of 100:
- stress_management
- motivation
- restless_night_score
- anxiety_level
- burnout_level
- physical_fitness_score
- dietary_habit_score
- focus_score
- overall_wellness_score

**Recommendation System:**
Based on the predicted KPIs, recommend one of the following *DailyWellnessAI* packages:
- Focus (for low concentration, motivation, burnout, mental fog, and lack of focus)
- Insomnia (for sleep disturbances, restlessness, anxiety before sleep, difficulty sleeping, and poor sleep quality)
- Fitness (for low physical activity, poor dietary habits, weak physical strength, low endurance, and lack of energy)

If the overall_wellness_score is greater than 90 (or 95), recommend all three packages and let the user choose among them, emphasizing that DailyWellnessAI offers holistic well-being solutions.

**Summary Report:**
Provide a brief wellness summary explaining the predicted KPIs and recommended package(s) based on the user's responses. Justify the recommendations by highlighting key factors affecting the user's well-being and how DailyWellnessAI can help improve them. Take into account the user's name, age, gender, height, and weight when providing recommendations.

### Personal Details:
- Age: {age}
- Gender: {gender}
- Height: {height}
- Weight: {weight}

### Assessment Questions:

1. How often do you feel stressed by daily tasks?
   Options: Never, Sometimes, Often, Always
   Answer: {ans1}

2. How well do you handle stress?
   Options: Excellent, Good, Fair, Poor
   Answer: {ans2}

3. How would you rate your current level of burnout?
   Options: None, Mild, Moderate, Severe
   Answer: {ans3}

4. How well can you concentrate on your daily tasks?
   Options: Excellent, Good, Fair, Poor
   Answer: {ans4}

5. How often do you have trouble falling asleep?
   Options: Never, Rarely, Sometimes, Always
   Answer: {ans5}

6. How would you rate the quality of your sleep?
   Options: Excellent, Good, Fair, Poor
   Answer: {ans6}

7. How often do you wake up during the night?
   Options: Never, Rarely, Sometimes, Often
   Answer: {ans7}

8. How often do you feel anxious before sleep?
   Options: Never, Rarely, Sometimes, Often
   Answer: {ans8}

9. How happy are you with your eating habits?
   Options: Very happy, Happy, Unhappy, Very unhappy
   Answer: {ans9}

10. How balanced is your diet?
    Options: Very balanced, Balanced, Unbalanced, Very unbalanced
    Answer: {ans10}

11. How often do you exercise or do physical activity?
    Options: Daily, Several times a week, Once a week, Never
    Answer: {ans11}

12. How would you rate your physical strength?
    Options: Excellent, Good, Fair, Poor
    Answer: {ans12}

13. How motivated are you to work on your wellness goals daily?
    Options: Very motivated, Moderately motivated, Slightly motivated, Not at all
    Answer: {ans13}

14. How would you rate your overall health and well-being?
    Options: Excellent, Good, Fair, Poor
    Answer: {ans14}

15. Any more remarks about yourself that you want to add?
    Answer: {ans15}

Use the responses and personal details to generate KPI predictions, determine the recommended *DailyWellnessAI* package(s), and provide a concise summary report that briefly justifies the recommendations, taking into account the user's age, gender, height, and weight.
"""

chat = ChatGroq(api_key=api_key, model="llama-3.3-70b-versatile", temperature=0.2)
prompt_template = PromptTemplate(
    input_variables=["age", "gender", "height", "weight"] + [f"ans{i}" for i in range(1, 16)],
    template=template
)

def run_assessment(personal_details, answers):
    prompt = prompt_template.format(**personal_details, **answers)
    structured_llm = chat.with_structured_output(AssessmentOutput)
    return structured_llm.invoke(prompt)

def get_emoji(score):
    if score < 20:
        return "😒"
    elif score < 40:
        return "😞"
    elif score < 60:
        return "😐"
    elif score < 80:
        return "πŸ™‚"
    else:
        return "πŸ˜„"

def create_overall_wellness_donut(score):
    color = '#FF5252' if score < 50 else '#FFC107' if score < 75 else '#4CAF50'
    fig = go.Figure(go.Pie(
        values=[score, 100 - score],
        hole=0.7,
        textinfo='none',
        marker_colors=[color, '#E0E0E0'],
        showlegend=False
    ))
    fig.update_layout(
        annotations=[dict(
            text=f"{get_emoji(score)}",
            font_size=24,
            showarrow=False
        )],
        title=dict(text="Overall Wellness", x=0.5, font=dict(size=16)),
        margin=dict(t=20, b=20, l=20, r=20),
        height=300
    )
    return fig

def create_kpi_bar_chart(kpis, values):
    colors = ['#FF5252' if v < 50 else '#FFC107' if v < 75 else '#4CAF50' for v in values]
    fig = go.Figure(go.Bar(
        x=kpis,
        y=values,
        marker_color=colors,
        text=[f"{v}%" for v in values],
        textposition='auto'
    ))
    fig.update_layout(
        title="KPI Breakdown",
        xaxis=dict(title="KPI"),
        yaxis=dict(title="Score (%)", range=[0, 100]),
        margin=dict(l=40, r=40, t=60, b=40),
        height=400
    )
    return fig

def create_radar_chart(data):
    categories = [
        'Stress Management',
        'Motivation',
        'Sleep Quality',
        'Anxiety Control',
        'Burnout Resistance',
        'Physical Fitness',
        'Diet & Nutrition',
        'Focus'
    ]
    values = [
        float(data['stress_management']),
        float(data['motivation']),
        100 - float(data['restless_night_score']),
        100 - float(data['anxiety_level']),
        100 - float(data['burnout_level']),
        float(data['physical_fitness_score']),
        float(data['dietary_habit_score']),
        float(data['focus_score'])
    ]
    fig = go.Figure()
    fig.add_trace(go.Scatterpolar(
        r=values,
        theta=categories,
        fill='toself',
        fillcolor='rgba(76, 175, 80, 0.3)',
        line=dict(color='#4CAF50', width=2),
        name='Your Profile'
    ))
    fig.update_layout(
        polar=dict(
            radialaxis=dict(visible=True, range=[0, 100], tickfont=dict(size=10))
        ),
        showlegend=False,
        margin=dict(l=40, r=40, t=20, b=20),
        height=400
    )
    return fig

def create_bullet_charts_combined(data):
    bullet_data = [
        ("Stress Management", float(data['stress_management'])),
        ("Motivation", float(data['motivation'])),
        ("Sleep Quality", 100 - float(data['restless_night_score'])),
        ("Anxiety Control", 100 - float(data['anxiety_level'])),
        ("Burnout Resistance", 100 - float(data['burnout_level'])),
        ("Physical Fitness", float(data['physical_fitness_score'])),
        ("Diet & Nutrition", float(data['dietary_habit_score'])),
        ("Focus", float(data['focus_score']))
    ]
    rows, cols = 2, 4
    target = 80
    fig = make_subplots(rows=rows, cols=cols, subplot_titles=[item[0] for item in bullet_data])
    for i, (label, val) in enumerate(bullet_data):
        row = i // cols + 1
        col = i % cols + 1
        fig.add_trace(go.Bar(
            x=[val],
            y=[""],
            orientation="h",
            marker_color='#4CAF50' if val >= target else '#FF5252',
            text=[f"{val}%"],
            textposition='inside',
            showlegend=False
        ), row=row, col=col)
        fig.update_xaxes(range=[0, 100], row=row, col=col)
        fig.add_shape(
            type="line",
            x0=target, x1=target,
            y0=0, y1=1,
            xref=f"x{i+1}",
            yref=f"y{i+1}",
            line=dict(color="black", width=2, dash="dash")
        )
    fig.update_layout(height=400, width=1000, margin=dict(l=20, r=20, t=40, b=20))
    return fig

def combine_report(results):
    packages = results["package"]
    rec_text = ", ".join(packages) if packages else "None"
    final_text = f"### Report\n{results['report']}\n\n**Recommended Packages:** {rec_text}"
    return final_text

def gradio_assessment(
    age, gender, height, weight,
    ans1, ans2, ans3, ans4, ans5,
    ans6, ans7, ans8, ans9, ans10,
    ans11, ans12, ans13, ans14, ans15
):
    personal_details = {
        "age": age,
        "gender": gender,
        "height": height,
        "weight": weight
    }
    answers = {
        "ans1": ans1, "ans2": ans2, "ans3": ans3, "ans4": ans4, "ans5": ans5,
        "ans6": ans6, "ans7": ans7, "ans8": ans8, "ans9": ans9, "ans10": ans10,
        "ans11": ans11, "ans12": ans12, "ans13": ans13, "ans14": ans14,
        "ans15": ans15
    }
    results = run_assessment(personal_details, answers)
    overall_score = int(float(results["overall_wellness_score"]))
    donut_fig = create_overall_wellness_donut(overall_score)
    kpis = [
        "Stress Management", "Motivation", "Sleep Quality",
        "Anxiety Control", "Burnout Resistance", "Physical Fitness",
        "Diet & Nutrition", "Focus"
    ]
    values = [
        float(results["stress_management"]),
        float(results["motivation"]),
        100 - float(results["restless_night_score"]),
        100 - float(results["anxiety_level"]),
        100 - float(results["burnout_level"]),
        float(results["physical_fitness_score"]),
        float(results["dietary_habit_score"]),
        float(results["focus_score"])
    ]
    bar_fig = create_kpi_bar_chart(kpis, values)
    radar_fig = create_radar_chart(results)
    bullet_fig = create_bullet_charts_combined(results)
    report_text = combine_report(results)
    return donut_fig, bar_fig, radar_fig, bullet_fig, report_text

def build_app():
    with gr.Blocks() as demo:
        gr.Markdown("# 🌿 DailyWellnessAI Assessment")
        gr.Markdown("Fill out the questionnaire below to receive personalized insights and recommendations.")
        with gr.Row():
            with gr.Column():
                age = gr.Number(label="Your Age")
                gender = gr.Dropdown(label="Your Gender", choices=["Male", "Female", "Other"], value="Male")
                height = gr.Textbox(label="Your Height (e.g., 180 cm)", placeholder="Enter your height")
                weight = gr.Textbox(label="Your Weight (e.g., 80 kg)", placeholder="Enter your weight")
            with gr.Column():
                ans1 = gr.Dropdown(label="1. How often do you feel stressed by daily tasks?", choices=["Never", "Sometimes", "Often", "Always"], value="Never")
                ans2 = gr.Dropdown(label="2. How well do you handle stress?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
                ans3 = gr.Dropdown(label="3. How would you rate your current level of burnout?", choices=["None", "Mild", "Moderate", "Severe"], value="None")
                ans4 = gr.Dropdown(label="4. How well can you concentrate on your daily tasks?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
                ans5 = gr.Dropdown(label="5. How often do you have trouble falling asleep?", choices=["Never", "Rarely", "Sometimes", "Always"], value="Rarely")
                ans6 = gr.Dropdown(label="6. How would you rate the quality of your sleep?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
                ans7 = gr.Dropdown(label="7. How often do you wake up during the night?", choices=["Never", "Rarely", "Sometimes", "Often"], value="Rarely")
                ans8 = gr.Dropdown(label="8. How often do you feel anxious before sleep?", choices=["Never", "Rarely", "Sometimes", "Often"], value="Rarely")
            with gr.Column():
                ans9 = gr.Dropdown(label="9. How happy are you with your eating habits?", choices=["Very happy", "Happy", "Unhappy", "Very unhappy"], value="Happy")
                ans10 = gr.Dropdown(label="10. How balanced is your diet?", choices=["Very balanced", "Balanced", "Unbalanced", "Very unbalanced"], value="Balanced")
                ans11 = gr.Dropdown(label="11. How often do you exercise or do physical activity?", choices=["Daily", "Several times a week", "Once a week", "Never"], value="Daily")
                ans12 = gr.Dropdown(label="12. How would you rate your physical strength?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
                ans13 = gr.Dropdown(label="13. How motivated are you to work on your wellness goals daily?", choices=["Very motivated", "Moderately motivated", "Slightly motivated", "Not at all"], value="Very motivated")
                ans14 = gr.Dropdown(label="14. How would you rate your overall health and well-being?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
                ans15 = gr.Textbox(label="15. Any more remarks about yourself that you want to add?", lines=3)
        with gr.Row():
            submit_btn = gr.Button("Submit Assessment")
        with gr.Row():
            gr.Markdown("## Results")
        with gr.Row():
            donut_plot = gr.Plot(label="Overall Wellness Donut")
            bar_plot = gr.Plot(label="KPI Bar Chart")
        with gr.Row():
            radar_plot = gr.Plot(label="Radar Chart")
            bullet_plot = gr.Plot(label="Bullet Charts")
        with gr.Row():
            report_md = gr.Markdown(label="Assessment Report")
        submit_btn.click(
            fn=gradio_assessment,
            inputs=[age, gender, height, weight, ans1, ans2, ans3, ans4, ans5, ans6, ans7, ans8, ans9, ans10, ans11, ans12, ans13, ans14, ans15],
            outputs=[donut_plot, bar_plot, radar_plot, bullet_plot, report_md]
        )
    return demo

if __name__ == "__main__":
    demo_app = build_app()
    demo_app.launch(server_name="0.0.0.0", server_port=7860, share=True)