File size: 15,883 Bytes
20720f9 0b5759a 20720f9 0b5759a 20720f9 0b5759a 20720f9 79f2e8b 20720f9 0b5759a 20720f9 0b5759a 20720f9 cedd895 20720f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
from typing import TypedDict, List
from typing_extensions import Annotated
from dotenv import load_dotenv
import numpy as np
load_dotenv()
api_key = os.getenv('GROQ_API_KEY')
class AssessmentOutput(TypedDict):
stress_management: Annotated[float, "Percentage score (0-100) for Stress Management KPI"]
motivation: Annotated[float, "Percentage score (0-100) for Motivation KPI"]
restless_night_score: Annotated[float, "Percentage score (0-100) for Restless Night Score KPI"]
anxiety_level: Annotated[float, "Percentage score (0-100) for Anxiety Level KPI"]
burnout_level: Annotated[float, "Percentage score (0-100) for Burnout Level KPI"]
physical_fitness_score: Annotated[float, "Percentage score (0-100) for Physical Fitness KPI"]
dietary_habit_score: Annotated[float, "Percentage score (0-100) for Diet & Nutrition KPI"]
focus_score: Annotated[float, "Percentage score (0-100) for Cognitive Performance and Focus KPI"]
overall_wellness_score: Annotated[float, "Percentage score (0-100) based on all the individual KPIs"]
package: Annotated[List[str], "List of recommended packages. Options include 'Focus', 'Fitness', and 'Insomnia'. The recommendation can be a single package, a combination of packages, or all three packages based on the assessment."]
report: Annotated[str, "A detailed summary report of the assessment results and recommendations based on the KPI analysis."]
template = """
You are an AI wellness assessment system designed to evaluate users' well-being and provide personalized insights. This assessment system analyzes responses and generates wellness reports, recommending specific services and packages from *DailyWellnessAI* to help users improve their mental and physical health. While this system itself is not called *DailyWellnessAI*, all recommendations are part of the *DailyWellnessAI* platform.
Based on the user's responses to the following 15 questions, along with their personal details (Age, Gender, Height, Weight), predict the following KPIs as percentages out of 100:
- stress_management
- motivation
- restless_night_score
- anxiety_level
- burnout_level
- physical_fitness_score
- dietary_habit_score
- focus_score
- overall_wellness_score
**Recommendation System:**
Based on the predicted KPIs, recommend one of the following *DailyWellnessAI* packages:
- Focus (for low concentration, motivation, burnout, mental fog, and lack of focus)
- Insomnia (for sleep disturbances, restlessness, anxiety before sleep, difficulty sleeping, and poor sleep quality)
- Fitness (for low physical activity, poor dietary habits, weak physical strength, low endurance, and lack of energy)
If the overall_wellness_score is greater than 90 (or 95), recommend all three packages and let the user choose among them, emphasizing that DailyWellnessAI offers holistic well-being solutions.
**Summary Report:**
Provide a brief wellness summary explaining the predicted KPIs and recommended package(s) based on the user's responses. Justify the recommendations by highlighting key factors affecting the user's well-being and how DailyWellnessAI can help improve them. Take into account the user's name, age, gender, height, and weight when providing recommendations.
### Personal Details:
- Age: {age}
- Gender: {gender}
- Height: {height}
- Weight: {weight}
### Assessment Questions:
1. How often do you feel stressed by daily tasks?
Options: Never, Sometimes, Often, Always
Answer: {ans1}
2. How well do you handle stress?
Options: Excellent, Good, Fair, Poor
Answer: {ans2}
3. How would you rate your current level of burnout?
Options: None, Mild, Moderate, Severe
Answer: {ans3}
4. How well can you concentrate on your daily tasks?
Options: Excellent, Good, Fair, Poor
Answer: {ans4}
5. How often do you have trouble falling asleep?
Options: Never, Rarely, Sometimes, Always
Answer: {ans5}
6. How would you rate the quality of your sleep?
Options: Excellent, Good, Fair, Poor
Answer: {ans6}
7. How often do you wake up during the night?
Options: Never, Rarely, Sometimes, Often
Answer: {ans7}
8. How often do you feel anxious before sleep?
Options: Never, Rarely, Sometimes, Often
Answer: {ans8}
9. How happy are you with your eating habits?
Options: Very happy, Happy, Unhappy, Very unhappy
Answer: {ans9}
10. How balanced is your diet?
Options: Very balanced, Balanced, Unbalanced, Very unbalanced
Answer: {ans10}
11. How often do you exercise or do physical activity?
Options: Daily, Several times a week, Once a week, Never
Answer: {ans11}
12. How would you rate your physical strength?
Options: Excellent, Good, Fair, Poor
Answer: {ans12}
13. How motivated are you to work on your wellness goals daily?
Options: Very motivated, Moderately motivated, Slightly motivated, Not at all
Answer: {ans13}
14. How would you rate your overall health and well-being?
Options: Excellent, Good, Fair, Poor
Answer: {ans14}
15. Any more remarks about yourself that you want to add?
Answer: {ans15}
Use the responses and personal details to generate KPI predictions, determine the recommended *DailyWellnessAI* package(s), and provide a concise summary report that briefly justifies the recommendations, taking into account the user's age, gender, height, and weight.
"""
chat = ChatGroq(api_key=api_key, model="llama-3.3-70b-versatile", temperature=0.2)
prompt_template = PromptTemplate(
input_variables=["age", "gender", "height", "weight"] + [f"ans{i}" for i in range(1, 16)],
template=template
)
def run_assessment(personal_details, answers):
prompt = prompt_template.format(**personal_details, **answers)
structured_llm = chat.with_structured_output(AssessmentOutput)
return structured_llm.invoke(prompt)
def get_emoji(score):
if score < 20:
return "π’"
elif score < 40:
return "π"
elif score < 60:
return "π"
elif score < 80:
return "π"
else:
return "π"
def create_overall_wellness_donut(score):
color = '#FF5252' if score < 50 else '#FFC107' if score < 75 else '#4CAF50'
fig = go.Figure(go.Pie(
values=[score, 100 - score],
hole=0.7,
textinfo='none',
marker_colors=[color, '#E0E0E0'],
showlegend=False
))
fig.update_layout(
annotations=[dict(
text=f"{get_emoji(score)}",
font_size=24,
showarrow=False
)],
title=dict(text="Overall Wellness", x=0.5, font=dict(size=16)),
margin=dict(t=20, b=20, l=20, r=20),
height=300
)
return fig
def create_kpi_bar_chart(kpis, values):
colors = ['#FF5252' if v < 50 else '#FFC107' if v < 75 else '#4CAF50' for v in values]
fig = go.Figure(go.Bar(
x=kpis,
y=values,
marker_color=colors,
text=[f"{v}%" for v in values],
textposition='auto'
))
fig.update_layout(
title="KPI Breakdown",
xaxis=dict(title="KPI"),
yaxis=dict(title="Score (%)", range=[0, 100]),
margin=dict(l=40, r=40, t=60, b=40),
height=400
)
return fig
def create_radar_chart(data):
categories = [
'Stress Management',
'Motivation',
'Sleep Quality',
'Anxiety Control',
'Burnout Resistance',
'Physical Fitness',
'Diet & Nutrition',
'Focus'
]
values = [
float(data['stress_management']),
float(data['motivation']),
100 - float(data['restless_night_score']),
100 - float(data['anxiety_level']),
100 - float(data['burnout_level']),
float(data['physical_fitness_score']),
float(data['dietary_habit_score']),
float(data['focus_score'])
]
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
fill='toself',
fillcolor='rgba(76, 175, 80, 0.3)',
line=dict(color='#4CAF50', width=2),
name='Your Profile'
))
fig.update_layout(
polar=dict(
radialaxis=dict(visible=True, range=[0, 100], tickfont=dict(size=10))
),
showlegend=False,
margin=dict(l=40, r=40, t=20, b=20),
height=400
)
return fig
def create_bullet_charts_combined(data):
bullet_data = [
("Stress Management", float(data['stress_management'])),
("Motivation", float(data['motivation'])),
("Sleep Quality", 100 - float(data['restless_night_score'])),
("Anxiety Control", 100 - float(data['anxiety_level'])),
("Burnout Resistance", 100 - float(data['burnout_level'])),
("Physical Fitness", float(data['physical_fitness_score'])),
("Diet & Nutrition", float(data['dietary_habit_score'])),
("Focus", float(data['focus_score']))
]
rows, cols = 2, 4
target = 80
fig = make_subplots(rows=rows, cols=cols, subplot_titles=[item[0] for item in bullet_data])
for i, (label, val) in enumerate(bullet_data):
row = i // cols + 1
col = i % cols + 1
fig.add_trace(go.Bar(
x=[val],
y=[""],
orientation="h",
marker_color='#4CAF50' if val >= target else '#FF5252',
text=[f"{val}%"],
textposition='inside',
showlegend=False
), row=row, col=col)
fig.update_xaxes(range=[0, 100], row=row, col=col)
fig.add_shape(
type="line",
x0=target, x1=target,
y0=0, y1=1,
xref=f"x{i+1}",
yref=f"y{i+1}",
line=dict(color="black", width=2, dash="dash")
)
fig.update_layout(height=400, width=1000, margin=dict(l=20, r=20, t=40, b=20))
return fig
def combine_report(results):
packages = results["package"]
rec_text = ", ".join(packages) if packages else "None"
final_text = f"### Report\n{results['report']}\n\n**Recommended Packages:** {rec_text}"
return final_text
def gradio_assessment(
age, gender, height, weight,
ans1, ans2, ans3, ans4, ans5,
ans6, ans7, ans8, ans9, ans10,
ans11, ans12, ans13, ans14, ans15
):
personal_details = {
"age": age,
"gender": gender,
"height": height,
"weight": weight
}
answers = {
"ans1": ans1, "ans2": ans2, "ans3": ans3, "ans4": ans4, "ans5": ans5,
"ans6": ans6, "ans7": ans7, "ans8": ans8, "ans9": ans9, "ans10": ans10,
"ans11": ans11, "ans12": ans12, "ans13": ans13, "ans14": ans14,
"ans15": ans15
}
results = run_assessment(personal_details, answers)
overall_score = int(float(results["overall_wellness_score"]))
donut_fig = create_overall_wellness_donut(overall_score)
kpis = [
"Stress Management", "Motivation", "Sleep Quality",
"Anxiety Control", "Burnout Resistance", "Physical Fitness",
"Diet & Nutrition", "Focus"
]
values = [
float(results["stress_management"]),
float(results["motivation"]),
100 - float(results["restless_night_score"]),
100 - float(results["anxiety_level"]),
100 - float(results["burnout_level"]),
float(results["physical_fitness_score"]),
float(results["dietary_habit_score"]),
float(results["focus_score"])
]
bar_fig = create_kpi_bar_chart(kpis, values)
radar_fig = create_radar_chart(results)
bullet_fig = create_bullet_charts_combined(results)
report_text = combine_report(results)
return donut_fig, bar_fig, radar_fig, bullet_fig, report_text
def build_app():
with gr.Blocks() as demo:
gr.Markdown("# πΏ DailyWellnessAI Assessment")
gr.Markdown("Fill out the questionnaire below to receive personalized insights and recommendations.")
with gr.Row():
with gr.Column():
age = gr.Number(label="Your Age")
gender = gr.Dropdown(label="Your Gender", choices=["Male", "Female", "Other"], value="Male")
height = gr.Textbox(label="Your Height (e.g., 180 cm)", placeholder="Enter your height")
weight = gr.Textbox(label="Your Weight (e.g., 80 kg)", placeholder="Enter your weight")
with gr.Column():
ans1 = gr.Dropdown(label="1. How often do you feel stressed by daily tasks?", choices=["Never", "Sometimes", "Often", "Always"], value="Never")
ans2 = gr.Dropdown(label="2. How well do you handle stress?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
ans3 = gr.Dropdown(label="3. How would you rate your current level of burnout?", choices=["None", "Mild", "Moderate", "Severe"], value="None")
ans4 = gr.Dropdown(label="4. How well can you concentrate on your daily tasks?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
ans5 = gr.Dropdown(label="5. How often do you have trouble falling asleep?", choices=["Never", "Rarely", "Sometimes", "Always"], value="Rarely")
ans6 = gr.Dropdown(label="6. How would you rate the quality of your sleep?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
ans7 = gr.Dropdown(label="7. How often do you wake up during the night?", choices=["Never", "Rarely", "Sometimes", "Often"], value="Rarely")
ans8 = gr.Dropdown(label="8. How often do you feel anxious before sleep?", choices=["Never", "Rarely", "Sometimes", "Often"], value="Rarely")
with gr.Column():
ans9 = gr.Dropdown(label="9. How happy are you with your eating habits?", choices=["Very happy", "Happy", "Unhappy", "Very unhappy"], value="Happy")
ans10 = gr.Dropdown(label="10. How balanced is your diet?", choices=["Very balanced", "Balanced", "Unbalanced", "Very unbalanced"], value="Balanced")
ans11 = gr.Dropdown(label="11. How often do you exercise or do physical activity?", choices=["Daily", "Several times a week", "Once a week", "Never"], value="Daily")
ans12 = gr.Dropdown(label="12. How would you rate your physical strength?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
ans13 = gr.Dropdown(label="13. How motivated are you to work on your wellness goals daily?", choices=["Very motivated", "Moderately motivated", "Slightly motivated", "Not at all"], value="Very motivated")
ans14 = gr.Dropdown(label="14. How would you rate your overall health and well-being?", choices=["Excellent", "Good", "Fair", "Poor"], value="Good")
ans15 = gr.Textbox(label="15. Any more remarks about yourself that you want to add?", lines=3)
with gr.Row():
submit_btn = gr.Button("Submit Assessment")
with gr.Row():
gr.Markdown("## Results")
with gr.Row():
donut_plot = gr.Plot(label="Overall Wellness Donut")
bar_plot = gr.Plot(label="KPI Bar Chart")
with gr.Row():
radar_plot = gr.Plot(label="Radar Chart")
bullet_plot = gr.Plot(label="Bullet Charts")
with gr.Row():
report_md = gr.Markdown(label="Assessment Report")
submit_btn.click(
fn=gradio_assessment,
inputs=[age, gender, height, weight, ans1, ans2, ans3, ans4, ans5, ans6, ans7, ans8, ans9, ans10, ans11, ans12, ans13, ans14, ans15],
outputs=[donut_plot, bar_plot, radar_plot, bullet_plot, report_md]
)
return demo
if __name__ == "__main__":
demo_app = build_app()
demo_app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|