File size: 7,127 Bytes
602010e 585435b 8140d5a 20e8d9a ac41acd 4c1dfd9 8140d5a 4c1dfd9 8140d5a ac41acd 8140d5a ac41acd 4c1dfd9 8140d5a ac41acd 8140d5a 4c1dfd9 8140d5a 4c1dfd9 90f06c9 9bcfd33 48b635b 90f06c9 4c1dfd9 8c33b5c 4c1dfd9 8c33b5c ac41acd 8c33b5c 4c1dfd9 16b18f5 4c1dfd9 ac41acd 585435b 602010e 585435b 8140d5a 585435b 8140d5a e102b08 585435b 2bb4d5a 94ccb47 b1558e3 8140d5a 602010e 94ccb47 8140d5a 1ceaf3e 15bd5c0 b1558e3 1ceaf3e b1558e3 1ceaf3e 15bd5c0 fb4e39c 15bd5c0 000548f 15bd5c0 fb8294c 15bd5c0 fb4e39c 15bd5c0 ed7e400 602010e a16489c 602010e 15bd5c0 20ff6a1 15bd5c0 50a8e40 15bd5c0 fb4e39c fb8294c 15bd5c0 000548f 15bd5c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gc
import gradio as gr
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM #, HqqConfig
# # # quant_config = HqqConfig(nbits=8, group_size=64)
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# print("Loading tokenizer & model…")
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# # # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
# model =\
# AutoModelForCausalLM\
# .from_pretrained(
# MODEL_ID,
# torch_dtype=torch.float16,
# # device_map="cuda",
# # quantization_config=quant_config
# ).to(DEVICE)
# gc.collect()
#########
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Float8WeightOnlyConfig
# quant_config = Float8WeightOnlyConfig()
quant_config = Float8DynamicActivationFloat8WeightConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config)
gc.collect()
#########
# from unsloth import FastLanguageModel
# model, tokenizer = FastLanguageModel.from_pretrained(
# "unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
# max_seq_length=128_000,
# load_in_4bit=True
# )
#########
# import gc
# import gradio as gr
# from transformers import AutoTokenizer
# from optimum.onnxruntime import ORTModelForCausalLM, ORTQuantizer
# from optimum.onnxruntime.configuration import AutoQuantizationConfig
# MODEL_NAME = "HuggingFaceTB/SmolLM3-3B"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True)
# print("Creating quant config")
# qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
# print("Creating quant config successful")
# print("Creating quantizer")
# quantizer = ORTQuantizer.from_pretrained(model)
# print("Creating quantizer successful")
# # Step 4: Perform quantization saving output in a new directory
# quantized_model_dir = "./quantized_model"
# print("Starting quantization...")
# quantizer.quantize(save_dir=quantized_model_dir, quantization_config=qconfig)
# print("Quantization was successful. Garbage collecting...")
# del(quantizer)
# del(qconfig)
# del(model)
# Run garbage collection again to release memory from quantizer objects
gc.collect()
# # Step 5: Load the quantized ONNX model for inference
# print("Loading quantized ONNX model for inference...")
# model = ORTModelForCausalLM.from_pretrained(quantized_model_dir)
# print("Loading model was succcessful. Garbage collecting.")
# Garbage collection again after final loading
gc.collect()
#########
# print("Loading tokenizer & model…")
# import gradio as gr
# from transformers import AutoTokenizer
# from optimum.onnxruntime import ORTModelForCausalLM
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# model = ORTModelForCausalLM.from_pretrained(MODEL_ID, export=True, quantize=True)
#########
# -------------------------------------------------
# Optional tool(s)
# -------------------------------------------------
# TOOLS = [{
# "name": "get_weather",
# "description": "Get the current weather in a given city",
# "parameters": {
# "type": "object",
# "properties": {
# "city": {"type": "string", "description": "City name"}
# },
# "required": ["city"]
# }
# }]
# -------------------------------------------------
# Helpers
# -------------------------------------------------
def build_messages(history, enable_thinking: bool):
"""Convert Gradio history to the chat template."""
messages = []
for h in history:
messages.append({"role": h["role"], "content": h["content"]})
# Add system instruction for mode
system_flag = "/think" if enable_thinking else "/no_think"
messages.insert(0, {"role": "system", "content": system_flag})
return messages
def chat_fn(history, enable_thinking, temperature, top_p, top_k, repetition_penalty, max_new_tokens):
"""Generate a streaming response."""
messages = build_messages(history, enable_thinking)
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
# xml_tools=TOOLS
)
inputs = tokenizer(text, return_tensors="pt")
gc.collect()
with torch.inference_mode():
streamer = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id,
streamer=None # we'll yield manually
)
gc.collect()
output_ids = streamer[0][len(inputs.input_ids[0]):]
response = tokenizer.decode(output_ids, skip_special_tokens=True)
if isinstance(response, str):
response = response.replace('<think>',"# <think>").replace('</think>',"</think>")
elif isinstance(response,list):
response = [paper.replace('<think>',"# <think>").replace('</think>',"</think>") for paper in response]
else:
raise ValueError("Tokenizer response seems malformed; Not a string, nor a list?!?!")
# streaming char-by-char
history.append({"role": "assistant", "content": ""})
for ch in response:
history[-1]["content"] += ch
yield history
# -------------------------------------------------
# Blocks UI
# -------------------------------------------------
with gr.Blocks(title="SmolLM3-3B Chat") as demo:
gr.Markdown("## 🤖 SmolLM3-3B Chatbot (Streaming)")
with gr.Row():
enable_think = gr.Checkbox(label="Enable Extended Thinking (/think)", value=True)
temperature = gr.Slider(0.0, 1.0, value=0.6, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p")
top_k = gr.Slider(1,40,value=20,label="Top_k")
repetition_penalty = gr.Slider(1.0,1.4,value=1.1,label="Repetition_Penalty")
max_new_tokens = gr.Slider(1000,32768,value=32768,label="Max_New_Tokens")
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox(placeholder="Type your message here…", lines=1)
clear = gr.Button("Clear")
def user_fn(user_msg, history):
return "", history + [{"role": "user", "content": user_msg}]
msg.submit(
user_fn, [msg, chatbot], [msg, chatbot], queue=False
).then(
chat_fn, [chatbot, enable_think, temperature, top_p, top_k, repetition_penalty, max_new_tokens], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue().launch()
|