File size: 11,076 Bytes
d6115aa 61da5bb d6115aa a46bcf1 d6115aa 2f0356e d6115aa 61da5bb d6115aa 6de7d7c ce4f027 61da5bb ce4f027 a46bcf1 61da5bb 609ad66 61da5bb a46bcf1 61da5bb a46bcf1 6de7d7c a46bcf1 6de7d7c a46bcf1 ce4f027 d0945b1 d6115aa ce4f027 d6115aa c5529eb ce4f027 a46bcf1 ce4f027 61da5bb ce4f027 a46bcf1 c5529eb d6115aa a46bcf1 61da5bb a46bcf1 6de7d7c eb612a0 05c8b77 6de7d7c a46bcf1 3f1f7b2 61da5bb 6de7d7c 61da5bb c5529eb ce4f027 31fd291 d6115aa ce4f027 31fd291 d6115aa 5f09a62 2f0356e ce4f027 2f0356e d6115aa 5f09a62 80c68d0 2f0356e d6115aa 3558070 2f0356e 5f09a62 2f0356e 3558070 5f09a62 2f0356e 31fd291 2f0356e d6115aa 31fd291 2f0356e 31fd291 2f0356e 31fd291 2f0356e 5f09a62 2f0356e 34aeeab ce4f027 31fd291 ce4f027 31fd291 c5529eb 31fd291 5f09a62 ce4f027 9ecc2d0 31fd291 ce4f027 31fd291 c5529eb 31fd291 5f09a62 ce4f027 9ecc2d0 31fd291 ce4f027 2f0356e a46bcf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import os
import time
import gc
import threading
from datetime import datetime
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import spaces # Import spaces early to enable ZeroGPU support
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig
)
# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()
# ------------------------------
# Qwen3 Model Definitions
# ------------------------------
MODELS = {
"bodrunov-t-lite-lora-16": {"repo_id": "daviondk7131/bodrunov-t-lite-lora-16", "description": "С. Д. Бодрунов (T-lite)", "reward_repo_id": "daviondk7131/bodrunov-reward-model", "author": "bodrunov", "base_model": "t-tech/T-lite-it-1.0"},
"shakespeare-deepseek-lora-16": {"repo_id": "daviondk7131/shakespeare-deepseek-lora-16", "description": "У. Шекспир (Deepseek)", "reward_repo_id": "daviondk7131/shakespeare-reward-model", "author": "Shakespeare", "base_model": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"},
"chekhov-t-lite-lora-16": {"repo_id": "daviondk7131/chekhov-t-lite-lora-16", "description": "А. П. Чехов (T-lite)", "reward_repo_id": "daviondk7131/chekhov-reward-model", "author": "chekhov_ru", "base_model": "t-tech/T-lite-it-1.0"},
"tolstoy-t-lite-lora-16": {"repo_id": "daviondk7131/tolstoy-t-lite-lora-16", "description": "Л. Н. Толстой (T-lite)", "reward_repo_id": "daviondk7131/tolstoy-reward-model", "author": "tolstoy_ru", "base_model": "t-tech/T-lite-it-1.0"},
"dostoevsky-t-lite-lora-16": {"repo_id": "daviondk7131/dostoevsky-t-lite-lora-16", "description": "Ф. М. Достоевский (T-lite)", "reward_repo_id": "daviondk7131/dostoevsky-reward-model", "author": "dostoevsky_ru", "base_model": "t-tech/T-lite-it-1.0"},
"dostoevsky-yagpt-lora-16": {"repo_id": "daviondk7131/dostoevsky-yagpt-lora-16", "description": "Ф. М. Достоевский (YaGPT)", "reward_repo_id": "daviondk7131/dostoevsky-reward-model", "author": "dostoevsky_ru", "base_model": "yandex/YandexGPT-5-Lite-8B-instruct"},
"tolstoy-yagpt-lora-16": {"repo_id": "daviondk7131/tolstoy-yagpt-lora-16", "description": "Л. Н. Толстой (YaGPT)", "reward_repo_id": "daviondk7131/tolstoy-reward-model", "author": "tolstoy_ru", "base_model": "yandex/YandexGPT-5-Lite-8B-instruct"},
}
CACHE = {
"model_name": None,
"model": None,
"tokenizer": None,
"reward_model": None,
}
# Function to get just the model name from the dropdown selection
def get_model_name(full_selection):
return full_selection.split(" - ")[0]
# User input handling function
def user_input(user_message, history):
return "", history + [(user_message, None)]
class RewardModel(object):
def __init__(self, model_name):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.reward_model = AutoModelForSequenceClassification.from_pretrained(model_name, device_map=self.device).to('cuda')
self.reward_tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
def score(self, text):
inputs = self.reward_tokenizer(text, truncation=True, return_tensors='pt').to(self.device)
with torch.no_grad():
value = self.reward_model(**inputs).logits[0, 0].item()
return value
STYLE_TEMPLATE_PROMPT = """Below is an instruction describing the task, combined with input data that provides further context. Write a response that completes the request accordingly.
### Instruction:
Write down the text from the input data in the style of the author {}.
### Input data:
{}
### Answer:
{}"""
def generate(
model,
tokenizer,
author: str,
text: str,
temperature: float = 0.7,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.1,
do_sample: bool = True,
**kwargs
) -> str:
input_text = STYLE_TEMPLATE_PROMPT.format(author, text, "")
inputs = tokenizer(input_text, return_tensors="pt").to('cuda')
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=2048,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
**kwargs
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
if generated_text.startswith(input_text):
generated_text = generated_text[len(input_text):].strip()
return generated_text
@spaces.GPU(duration=60)
def bot_response(history, model_selection, max_tokens, temperature, top_k, top_p, repetition_penalty):
"""
Generate AI response to user input
"""
cancel_event.clear()
# Extract the latest user message
#user_message = history[-1][0]
#history_without_last = history[:-1]
# Get model name from selection
model_name = get_model_name(model_selection)
# Format the conversation
#conversation = format_conversation(history_without_last, system_prompt)
#conversation += "User: " + user_message + "\nAssistant: "
try:
"""
Load and cache a transformers pipeline for text generation.
Tries bfloat16, falls back to float16 or float32 if unsupported.
"""
load_kwargs = {
"pretrained_model_name_or_path": MODELS[model_name]["repo_id"],
"device_map": "auto",
"torch_dtype": torch.float16,
"trust_remote_code": True
}
if CACHE["model_name"] == model_name:
tokenizer = CACHE["tokenizer"]
model = CACHE["model"]
reward_model = CACHE["reward_model"]
else:
tokenizer = AutoTokenizer.from_pretrained(MODELS[model_name]["base_model"])
model = AutoModelForCausalLM.from_pretrained(**load_kwargs).to("cuda")
reward_model = RewardModel(model_name=MODELS[model_name]["reward_repo_id"])
CACHE["model_name"] = model_name
CACHE["tokenizer"] = tokenizer
CACHE["model"] = model
CACHE["reward_model"] = reward_model
author = MODELS[model_name]["author"]
#pipe = load_pipeline(model_name)
user_message = history[-1][0]
results = []
for i in range(3):
results.append(generate(model, tokenizer, author, user_message, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty))
response = max(results, key=reward_model.score)
# Update the last message pair with the response
history[-1] = (user_message, response)
return history
except Exception as e:
history[-1] = (user_message, f"Error: {e}")
return history
finally:
gc.collect()
#def get_default_system_prompt():
# today = datetime.now().strftime('%Y-%m-%d')
# return f"""You are Qwen3, a helpful and friendly AI assistat. Be concise, accurate, and helpful in your responses."""
def clear_chat():
return []
# CSS for improved visual style
css = """
.gradio-container {
background-color: #f5f7fb !important;
}
.qwen-header {
background: linear-gradient(90deg, #0099FF, #0066CC);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.qwen-container {
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
background: white;
padding: 20px;
margin-bottom: 20px;
}
.controls-container {
background: #f0f4fa;
border-radius: 10px;
padding: 15px;
margin-bottom: 15px;
}
.model-select {
border: 2px solid #0099FF !important;
border-radius: 8px !important;
}
.button-primary {
background-color: #0099FF !important;
color: white !important;
}
.button-secondary {
background-color: #6c757d !important;
color: white !important;
}
.footer {
text-align: center;
margin-top: 20px;
font-size: 0.8em;
color: #666;
}
"""
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="Chat", css=css) as demo:
#gr.HTML("""
#<div class="qwen-header">
# <h1>Style transfer chat</h1>
# <p>-----------------------</p>
#</div>
#""")
with gr.Row():
with gr.Column(scale=3):
with gr.Group(elem_classes="qwen-container"):
model_dd = gr.Dropdown(
label="Select Model",
choices=[f"{k} - {v['description']}" for k, v in MODELS.items()],
value=f"{list(MODELS.keys())[0]} - {MODELS[list(MODELS.keys())[0]]['description']}",
elem_classes="model-select"
)
with gr.Group(elem_classes="controls-container"):
gr.Markdown("### Generation Parameters")
with gr.Row():
max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens")
with gr.Row():
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
with gr.Row():
k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
clear_btn = gr.Button("Clear Chat", elem_classes="button-secondary")
with gr.Column(scale=7):
chatbot = gr.Chatbot()
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
lines=2
)
submit_btn = gr.Button("Send", variant="primary", elem_classes="button-primary")
gr.HTML("""
<div class="footer">
<p>Interface powered by Gradio and ZeroGPU.</p>
</div>
""")
# Connect UI elements to functions
submit_btn.click(
user_input,
inputs=[txt, chatbot],
outputs=[txt, chatbot],
queue=False
).then(
bot_response,
inputs=[chatbot, model_dd, max_tok, temp, k, p, rp],
outputs=chatbot,
api_name="generate"
)
txt.submit(
user_input,
inputs=[txt, chatbot],
outputs=[txt, chatbot],
queue=False
).then(
bot_response,
inputs=[chatbot, model_dd, max_tok, temp, k, p, rp],
outputs=chatbot,
api_name="generate"
)
clear_btn.click(
clear_chat,
outputs=[chatbot],
queue=False
)
if __name__ == "__main__":
demo.launch()
|