import requests import json from typing import List, Dict, Any def fetch_questions(api_url: str = "https://agents-course-unit4-scoring.hf.space") -> List[Dict[str, Any]]: """Fetch all questions from the GAIA API.""" try: response = requests.get(f"{api_url}/questions", timeout=15) response.raise_for_status() return response.json() except Exception as e: print(f"Error fetching questions: {e}") return [] def fetch_random_question(api_url: str = "https://agents-course-unit4-scoring.hf.space") -> Dict[str, Any]: """Fetch a random question from the GAIA API.""" try: response = requests.get(f"{api_url}/random-question", timeout=15) response.raise_for_status() return response.json() except Exception as e: print(f"Error fetching random question: {e}") return {} def submit_answers(username: str, agent_code: str, answers: List[Dict[str, str]], api_url: str = "https://agents-course-unit4-scoring.hf.space") -> Dict[str, Any]: """Submit answers to the GAIA API for scoring.""" try: submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers } response = requests.post(f"{api_url}/submit", json=submission_data, timeout=60) response.raise_for_status() return response.json() except Exception as e: print(f"Error submitting answers: {e}") return {"error": str(e)} def format_gaia_answer(raw_answer: str) -> str: """Format the agent's raw answer for GAIA submission (exact match).""" # Remove common prefixes that might interfere with exact matching prefixes_to_remove = [ "FINAL ANSWER:", "Final Answer:", "Answer:", "The answer is:", "The final answer is:", ] answer = raw_answer.strip() for prefix in prefixes_to_remove: if answer.startswith(prefix): answer = answer[len(prefix):].strip() # Remove trailing punctuation that might not be in ground truth while answer and answer[-1] in '.!?': answer = answer[:-1].strip() return answer def analyze_question_type(question: str) -> Dict[str, bool]: """Analyze what capabilities a question might need.""" question_lower = question.lower() analysis = { "needs_web_search": any(keyword in question_lower for keyword in [ "current", "recent", "latest", "today", "now", "2024", "2023" ]), "needs_file_processing": "file" in question_lower or "document" in question_lower, "needs_calculation": any(keyword in question_lower for keyword in [ "calculate", "compute", "sum", "total", "average", "percentage", "multiply", "divide" ]), "needs_image_analysis": any(keyword in question_lower for keyword in [ "image", "picture", "photo", "visual", "shown", "displayed" ]), "needs_text_processing": any(keyword in question_lower for keyword in [ "extract", "find in", "search for", "list", "count" ]) } return analysis def create_execution_plan(question: str, task_id: str = None) -> List[str]: """Create a step-by-step execution plan for a GAIA question.""" analysis = analyze_question_type(question) plan = [] # Always start with understanding the question plan.append("Analyze the question to understand what information is needed") # Add file processing if needed if task_id and analysis["needs_file_processing"]: plan.append(f"Download and process any files associated with task {task_id}") # Add web search if needed if analysis["needs_web_search"]: plan.append("Search the web for current/recent information") # Add image analysis if needed if analysis["needs_image_analysis"]: plan.append("Analyze any images for visual information") # Add calculation if needed if analysis["needs_calculation"]: plan.append("Perform necessary calculations") # Add text processing if needed if analysis["needs_text_processing"]: plan.append("Process and extract specific information from text") # Always end with synthesis plan.append("Synthesize all information to provide the final answer") return plan def log_agent_step(step: str, result: str, step_number: int = None): """Log agent execution steps for debugging.""" prefix = f"Step {step_number}: " if step_number else "" print(f"\nšŸ¤– {prefix}{step}") print(f"šŸ“ Result: {result[:200]}{'...' if len(result) > 200 else ''}")