from langchain.tools import Tool import requests import os from PIL import Image import io import base64 from ddgs import DDGS from typing import Optional import json import PyPDF2 import tempfile import requests from bs4 import BeautifulSoup from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.schema import Document from dotenv import load_dotenv # Load environment variables load_dotenv() def file_download_tool_func(task_id: str) -> str: """Downloads a file associated with a GAIA task ID.""" try: api_url = "https://agents-course-unit4-scoring.hf.space" file_url = f"{api_url}/files/{task_id}" response = requests.get(file_url, timeout=30) response.raise_for_status() # Save to temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".tmp") as temp_file: temp_file.write(response.content) temp_path = temp_file.name # Try to determine file type and process accordingly content_type = response.headers.get('content-type', '').lower() if 'image' in content_type: return f"Image file downloaded to {temp_path}. Use image_analysis_tool to analyze it." elif 'pdf' in content_type: return process_pdf_file(temp_path) elif 'text' in content_type: with open(temp_path, 'r', encoding='utf-8') as f: content = f.read() os.unlink(temp_path) # Clean up return f"Text file content:\n{content}" else: return f"File downloaded to {temp_path}. Content type: {content_type}" except Exception as e: return f"Failed to download file for task {task_id}: {str(e)}" def process_pdf_file(file_path: str) -> str: """Process a PDF file and extract text content.""" try: with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) text_content = "" for page_num in range(len(pdf_reader.pages)): page = pdf_reader.pages[page_num] text_content += f"\n--- Page {page_num + 1} ---\n" text_content += page.extract_text() os.unlink(file_path) # Clean up return f"PDF content extracted:\n{text_content}" except Exception as e: return f"Failed to process PDF: {str(e)}" file_download_tool = Tool( name="file_download", func=file_download_tool_func, description="Downloads and processes files associated with GAIA task IDs. Can handle images, PDFs, and text files." ) def image_analysis_tool_func(image_path_or_description: str) -> str: """Analyzes images for GAIA questions. For now, returns a placeholder.""" # This is a simplified version - in a full implementation, you'd use a vision model try: if os.path.exists(image_path_or_description): # Try to open and get basic info about the image with Image.open(image_path_or_description) as img: width, height = img.size mode = img.mode format_info = img.format # Clean up the temporary file os.unlink(image_path_or_description) return f"Image analyzed: {width}x{height} pixels, mode: {mode}, format: {format_info}. Note: This is a basic analysis. For detailed image content analysis, a vision model would be needed." else: return f"Image analysis requested for: {image_path_or_description}. Note: Full image analysis requires a vision model integration." except Exception as e: return f"Image analysis failed: {str(e)}" image_analysis_tool = Tool( name="image_analysis", func=image_analysis_tool_func, description="Analyzes images to extract information. Use this for questions involving visual content." ) def text_processor_tool_func(text: str, operation: str = "summarize") -> str: """Processes text for various operations like summarization, extraction, etc.""" try: if operation == "summarize": # Simple summarization - take first and last sentences if long sentences = text.split('.') if len(sentences) > 5: summary = '. '.join(sentences[:2] + sentences[-2:]) return f"Text summary: {summary}" else: return f"Text (short enough to not need summarization): {text}" elif operation == "extract_numbers": import re numbers = re.findall(r'\d+(?:\.\d+)?', text) return f"Numbers found in text: {numbers}" elif operation == "extract_dates": import re # Simple date pattern matching date_patterns = [ r'\d{1,2}/\d{1,2}/\d{4}', # MM/DD/YYYY r'\d{4}-\d{1,2}-\d{1,2}', # YYYY-MM-DD r'\b\w+ \d{1,2}, \d{4}\b' # Month DD, YYYY ] dates = [] for pattern in date_patterns: dates.extend(re.findall(pattern, text)) return f"Dates found in text: {dates}" else: return f"Text processing operation '{operation}' not supported. Available: summarize, extract_numbers, extract_dates" except Exception as e: return f"Text processing failed: {str(e)}" text_processor_tool = Tool( name="text_processor", func=text_processor_tool_func, description="Processes text for various operations like summarization, number extraction, date extraction. Specify operation as second parameter." ) def enhanced_web_retrieval_tool_func(query: str, backend: str = "bing") -> str: """Enhanced web search with cascading fallback: Wikipedia first, then general web search.""" try: print(f"🔍 Enhanced web retrieval for: {query}") # Step 1: Try Wikipedia search first print("📚 Searching Wikipedia...") wikipedia_results = get_wikipedia_search_urls(query, backend) if has_sufficient_results(wikipedia_results): print(f"✅ Found {len(wikipedia_results)} Wikipedia results") documents = fetch_and_process_results(wikipedia_results, "Wikipedia") if documents: return search_documents_with_vector_store(documents, query, "Wikipedia") # Step 2: Fallback to general web search print("🌐 Wikipedia results insufficient, searching general web...") web_results = get_general_web_search_urls(query, backend) if web_results: print(f"✅ Found {len(web_results)} general web results") documents = fetch_and_process_results(web_results, "General Web") if documents: return search_documents_with_vector_store(documents, query, "General Web") return "No sufficient results found in Wikipedia or general web search." except Exception as e: return f"Enhanced web retrieval failed: {str(e)}" def get_wikipedia_search_urls(query: str, backend: str = "auto") -> list: """Get search results from English Wikipedia using DDGS.""" try: with DDGS() as ddgs: # Create Wikipedia-specific search queries wikipedia_queries = [ f"{query} site:en.wikipedia.org" ] search_results = [] seen_urls = set() for wiki_query in wikipedia_queries: try: results = list(ddgs.text( wiki_query, max_results=8, region="us-en", backend=backend, safesearch="moderate" )) for result in results: url = result.get('href', '') # Only include Wikipedia URLs and avoid duplicates if 'en.wikipedia.org' in url and url not in seen_urls: search_results.append({ 'url': url, 'title': result.get('title', 'No title'), 'snippet': result.get('body', 'No content') }) seen_urls.add(url) # Limit to 6 unique Wikipedia pages if len(search_results) >= 6: break if len(search_results) >= 6: break except Exception as e: print(f"Wikipedia search attempt failed: {e}") continue return search_results except Exception as e: print(f"Wikipedia search URL retrieval failed: {e}") return [] def get_general_web_search_urls(query: str, backend: str = "auto") -> list: """Get search results from general web using DDGS.""" try: with DDGS() as ddgs: search_results = [] seen_urls = set() try: # General web search without site restriction results = list(ddgs.text( query, max_results=8, region="us-en", backend=backend, safesearch="moderate" )) for result in results: url = result.get('href', '') # Avoid duplicates and filter out low-quality sources if url not in seen_urls and is_quality_source(url): search_results.append({ 'url': url, 'title': result.get('title', 'No title'), 'snippet': result.get('body', 'No content') }) seen_urls.add(url) # Limit to 6 unique web pages if len(search_results) >= 6: break except Exception as e: print(f"General web search attempt failed: {e}") return search_results except Exception as e: print(f"General web search URL retrieval failed: {e}") return [] def is_quality_source(url: str) -> bool: """Filter out low-quality or problematic sources.""" low_quality_domains = [ 'pinterest.com', 'instagram.com', 'facebook.com', 'twitter.com', 'tiktok.com', 'youtube.com', 'reddit.com' ] for domain in low_quality_domains: if domain in url.lower(): return False return True def has_sufficient_results(results: list) -> bool: """Check if search results are sufficient to proceed.""" if not results: return False # Check for minimum number of results if len(results) < 2: return False # Check if results have meaningful content meaningful_results = 0 for result in results: snippet = result.get('snippet', '') title = result.get('title', '') # Consider result meaningful if it has substantial content if len(snippet) > 50 or len(title) > 10: meaningful_results += 1 return meaningful_results >= 2 def fetch_and_process_results(results: list, source_type: str) -> list: """Fetch and process webpage content from search results.""" documents = [] for result in results[:4]: # Process top 4 results url = result.get('url', '') title = result.get('title', 'No title') print(f"📄 Fetching content from: {title}") content = fetch_webpage_content(url) if content and len(content.strip()) > 100: # Ensure meaningful content doc = Document( page_content=content, metadata={ "source": url, "title": title, "source_type": source_type } ) documents.append(doc) return documents def fetch_webpage_content(url: str) -> str: """Fetch and extract clean text content from a webpage.""" try: headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } response = requests.get(url, headers=headers, timeout=10) response.raise_for_status() # Parse HTML and extract text soup = BeautifulSoup(response.content, 'html.parser') # Remove script and style elements for script in soup(["script", "style"]): script.decompose() # Get text content text = soup.get_text() # Clean up text lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = ' '.join(chunk for chunk in chunks if chunk) return text[:30000] except Exception as e: print(f"Failed to fetch content from {url}: {e}") return "" def search_documents_with_vector_store(documents: list, query: str, source_type: str = "Web") -> str: """Create vector store and search for relevant information.""" try: # Split documents into chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len, ) splits = text_splitter.split_documents(documents) if not splits: return "No content to process after splitting." # Create embeddings and vector store embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(splits, embeddings) # Search for relevant chunks with the original query relevant_docs = vectorstore.similarity_search(query, k=5) # Format results with source type indication results = [] results.append(f"🔍 Search Results from {source_type}:\n") for i, doc in enumerate(relevant_docs, 1): source = doc.metadata.get('source', 'Unknown source') title = doc.metadata.get('title', 'No title') source_type_meta = doc.metadata.get('source_type', source_type) content = doc.page_content[:2000] # Increased content length results.append(f"Result {i} ({source_type_meta}) - {title}:\n{content}\nSource: {source}\n") return "\n---\n".join(results) except Exception as e: return f"Vector search failed: {str(e)}" web_search_tool = Tool( name="enhanced_web_retrieval", func=enhanced_web_retrieval_tool_func, description="Enhanced cascading web search with vector retrieval. First searches Wikipedia for reliable factual information, then falls back to general web search if insufficient results are found. Supports multiple search backends (auto, html, lite, bing) and uses semantic search to find relevant information. Ideal for comprehensive research on any topic." ) # List of all tools for easy import agent_tools = [ web_search_tool, file_download_tool, image_analysis_tool, text_processor_tool ]