fastapi-chat / main.py
deepak191z's picture
Update main.py
14cd2f6 verified
raw
history blame
9.27 kB
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict, Any, Union
import os
import time
import httpx
import json
from dotenv import load_dotenv
load_dotenv()
# Simple configuration
API_PREFIX = os.getenv("API_PREFIX", "/")
MAX_RETRY_COUNT = int(os.getenv("MAX_RETRY_COUNT", "3"))
RETRY_DELAY = int(os.getenv("RETRY_DELAY", "5000"))
# Default headers for DuckDuckGo requests
FAKE_HEADERS = {
"Accept": "*/*",
"Accept-Language": "en-US,en;q=0.9",
"Origin": "https://duckduckgo.com/",
"Referer": "https://duckduckgo.com/",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36",
}
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# Models for request validation
class Message(BaseModel):
role: str
content: Union[str, List[Dict[str, Any]]]
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Message]
stream: bool = False
# Add timing information
@app.middleware("http")
async def add_process_time(request: Request, call_next):
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
print(f"{request.method} {response.status_code} {request.url.path} {process_time*1000:.2f} ms")
return response
@app.get("/")
async def root():
return {"message": "API server running"}
@app.get("/ping")
async def ping():
return {"message": "pong"}
@app.get(f"{API_PREFIX}v1/models")
async def get_models():
return {
"object": "list",
"data": [
{"id": "gpt-4o-mini", "object": "model", "owned_by": "ddg"},
{"id": "claude-3-haiku", "object": "model", "owned_by": "ddg"},
{"id": "llama-3.1-70b", "object": "model", "owned_by": "ddg"},
{"id": "mixtral-8x7b", "object": "model", "owned_by": "ddg"},
{"id": "o3-mini", "object": "model", "owned_by": "ddg"},
],
}
@app.post(f"{API_PREFIX}v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
try:
model = convert_model(request.model)
content = messages_to_text(request.messages)
return await create_completion(model, content, request.stream)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def convert_model(input_model: str) -> str:
"""Convert public model names to DuckDuckGo internal model names"""
model_mapping = {
"claude-3-haiku": "claude-3-haiku-20240307",
"llama-3.1-70b": "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
"mixtral-8x7b": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"o3-mini": "o3-mini"
}
return model_mapping.get(input_model.lower(), "gpt-4o-mini")
def messages_to_text(messages: List[Message]) -> str:
"""Convert message array to text format expected by DuckDuckGo API"""
result = ""
for message in messages:
role = "user" if message.role == "system" else message.role
if role in ["user", "assistant"]:
# Handle both string content and structured content
if isinstance(message.content, list):
content_str = "".join([item.get("text", "") for item in message.content if item.get("text", "")])
else:
content_str = message.content
result += f"{role}:{content_str};\r\n"
return result
async def request_token() -> str:
"""Get auth token from DuckDuckGo"""
try:
async with httpx.AsyncClient() as client:
response = await client.get(
"https://duckduckgo.com/duckchat/v1/status",
headers={**FAKE_HEADERS, "x-vqd-accept": "1"}
)
return response.headers.get("x-vqd-4", "")
except Exception as e:
print(f"Token request error: {e}")
return ""
async def create_completion(model: str, content: str, return_stream: bool, retry_count: int = 0):
"""Create a chat completion via DuckDuckGo API"""
token = await request_token()
try:
async with httpx.AsyncClient() as client:
response = await client.post(
"https://duckduckgo.com/duckchat/v1/chat",
headers={
**FAKE_HEADERS,
"Accept": "text/event-stream",
"Content-Type": "application/json",
"x-vqd-4": token,
},
json={
"model": model,
"messages": [{"role": "user", "content": content}]
},
stream=True
)
if response.status_code != 200:
raise HTTPException(status_code=response.status_code, detail="API request failed")
return await process_stream(model, response, return_stream)
except Exception as e:
if retry_count < MAX_RETRY_COUNT:
print(f"Retrying... attempt {retry_count + 1}")
await asyncio.sleep(RETRY_DELAY / 1000)
return await create_completion(model, content, return_stream, retry_count + 1)
raise HTTPException(status_code=500, detail=str(e))
async def process_stream(model: str, response, return_stream: bool):
"""Process streaming response from DuckDuckGo"""
buffer = ""
full_text = ""
async def generate_stream():
nonlocal buffer, full_text
# Process chunks as they arrive
async for chunk in response.aiter_bytes():
chunk_str = chunk.decode('utf-8').strip()
# Handle buffer from previous chunk if needed
if buffer:
chunk_str = buffer + chunk_str
buffer = ""
# Handle incomplete chunks
if not chunk_str.endswith('"}') and "[DONE]" not in chunk_str:
buffer = chunk_str
continue
# Process each line in the chunk
for line in chunk_str.split('\n'):
if len(line) < 6:
continue
# Remove prefix (data: )
line = line[6:] if line.startswith("data: ") else line
# Handle completion signal
if line == "[DONE]":
if return_stream:
yield f"data: {json.dumps(create_stop_chunk(model))}\n\n"
return
# Parse and handle message content
try:
data = json.loads(line)
if data.get("action") == "success" and "message" in data:
message = data["message"]
full_text += message
if return_stream:
yield f"data: {json.dumps(create_chunk(message, model))}\n\n"
except json.JSONDecodeError:
continue
# Return appropriate response based on streaming preference
if return_stream:
return StreamingResponse(generate_stream(), media_type="text/event-stream")
else:
# For non-streaming, consume the generator and return complete response
async for _ in generate_stream():
pass # Just collecting text in full_text
return JSONResponse(content=create_complete_response(full_text, model))
def create_chunk(text: str, model: str) -> dict:
"""Create a streaming chunk response"""
return {
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": text},
"finish_reason": None,
},
],
}
def create_stop_chunk(model: str) -> dict:
"""Create a final streaming chunk with stop reason"""
return {
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop",
},
],
}
def create_complete_response(text: str, model: str) -> dict:
"""Create a complete non-streaming response"""
return {
"id": "chatcmpl-123",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0},
"choices": [
{
"message": {"content": text, "role": "assistant"},
"index": 0,
"finish_reason": "stop",
},
],
}
# Only needed for retry delays
import asyncio
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)