Update app.py
Browse files
app.py
CHANGED
@@ -20,11 +20,20 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
20 |
|
21 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
23 |
-
|
|
|
|
|
|
|
24 |
model.eval()
|
25 |
|
26 |
def classify(prompt: str):
|
27 |
-
inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
with torch.no_grad():
|
29 |
logits = model(**inputs).logits
|
30 |
probs = torch.softmax(logits, dim=-1).squeeze().cpu()
|
|
|
20 |
|
21 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
23 |
+
|
24 |
+
# ← changed from model.to(device)
|
25 |
+
model = model.to_empty(device)
|
26 |
+
|
27 |
model.eval()
|
28 |
|
29 |
def classify(prompt: str):
|
30 |
+
inputs = tokenizer(
|
31 |
+
prompt,
|
32 |
+
return_tensors="pt",
|
33 |
+
truncation=True,
|
34 |
+
padding=True,
|
35 |
+
max_length=512
|
36 |
+
).to(device)
|
37 |
with torch.no_grad():
|
38 |
logits = model(**inputs).logits
|
39 |
probs = torch.softmax(logits, dim=-1).squeeze().cpu()
|