Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,6 @@ st.set_page_config(
|
|
16 |
|
17 |
MODEL_ID = "dejanseo/QDF-large"
|
18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
model = AutoModelForSequenceClassification.from_pretrained(
|
22 |
MODEL_ID,
|
@@ -24,11 +23,8 @@ model = AutoModelForSequenceClassification.from_pretrained(
|
|
24 |
low_cpu_mem_usage=True
|
25 |
).eval()
|
26 |
|
27 |
-
|
28 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
29 |
|
30 |
-
model.eval()
|
31 |
-
|
32 |
def classify(prompt: str):
|
33 |
inputs = tokenizer(
|
34 |
prompt,
|
@@ -37,7 +33,6 @@ def classify(prompt: str):
|
|
37 |
padding=True,
|
38 |
max_length=512
|
39 |
)
|
40 |
-
|
41 |
with torch.no_grad():
|
42 |
logits = model(**inputs).logits
|
43 |
probs = torch.softmax(logits, dim=-1).squeeze().cpu()
|
|
|
16 |
|
17 |
MODEL_ID = "dejanseo/QDF-large"
|
18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
19 |
|
20 |
model = AutoModelForSequenceClassification.from_pretrained(
|
21 |
MODEL_ID,
|
|
|
23 |
low_cpu_mem_usage=True
|
24 |
).eval()
|
25 |
|
|
|
26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
27 |
|
|
|
|
|
28 |
def classify(prompt: str):
|
29 |
inputs = tokenizer(
|
30 |
prompt,
|
|
|
33 |
padding=True,
|
34 |
max_length=512
|
35 |
)
|
|
|
36 |
with torch.no_grad():
|
37 |
logits = model(**inputs).logits
|
38 |
probs = torch.softmax(logits, dim=-1).squeeze().cpu()
|