Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# Constants
|
7 |
+
MODEL_ID = "dejanseo/substance"
|
8 |
+
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
|
13 |
+
model.eval()
|
14 |
+
return tokenizer, model
|
15 |
+
|
16 |
+
def classify(text, tokenizer, model):
|
17 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
18 |
+
with torch.no_grad():
|
19 |
+
logits = model(**inputs).logits
|
20 |
+
probs = torch.softmax(logits, dim=1).squeeze()
|
21 |
+
pred = torch.argmax(probs).item()
|
22 |
+
confidence = probs[pred].item()
|
23 |
+
return pred, confidence
|
24 |
+
|
25 |
+
# --- UI ---
|
26 |
+
st.set_page_config(layout="wide")
|
27 |
+
st.title("Content Substance Classifier")
|
28 |
+
st.markdown("This tool estimates the likelihood that content is thin or lacking in substance, using our [deep learning model](https://dejan.ai/blog/content-substance-classification/).")
|
29 |
+
|
30 |
+
tokenizer, model = load_model()
|
31 |
+
|
32 |
+
pasted_text = st.text_area("Enter full text for granular page analysis:", height=100)
|
33 |
+
run = st.button("🚀 Run Analysis", use_container_width=True)
|
34 |
+
|
35 |
+
if not pasted_text.strip():
|
36 |
+
st.info("Enter some text above, then click **Run Analysis**.")
|
37 |
+
|
38 |
+
# --- Classify Text ---
|
39 |
+
if run and pasted_text.strip():
|
40 |
+
st.markdown("### Results: Text Classification")
|
41 |
+
lines = [line.strip() for line in pasted_text.strip().split("\n") if line.strip()]
|
42 |
+
results = []
|
43 |
+
for line in lines:
|
44 |
+
label, conf = classify(line, tokenizer, model)
|
45 |
+
results.append({
|
46 |
+
"Text": line,
|
47 |
+
"Contains Thin Content": "Yes" if label == 0 else "No",
|
48 |
+
"Confidence": round(conf, 4)
|
49 |
+
})
|
50 |
+
df = pd.DataFrame(results)
|
51 |
+
st.data_editor(
|
52 |
+
df,
|
53 |
+
column_config={
|
54 |
+
"Confidence": st.column_config.ProgressColumn(
|
55 |
+
label="Confidence",
|
56 |
+
min_value=0.0,
|
57 |
+
max_value=1.0,
|
58 |
+
format="%.4f"
|
59 |
+
)
|
60 |
+
},
|
61 |
+
hide_index=True,
|
62 |
+
use_container_width=True
|
63 |
+
)
|