File size: 27,192 Bytes
f4c3fca 79180e5 bad4173 3ea0b26 62b53a3 780ec95 07016ca 62b53a3 79180e5 62b53a3 07016ca 56455aa 07016ca 79180e5 91d2a21 56455aa 07016ca 56455aa 07016ca 56455aa 07016ca 56455aa 07016ca 56455aa 7b5f2bf 79180e5 7b5f2bf 07016ca 7b5f2bf 79180e5 7b5f2bf ba50457 7b5f2bf ba50457 07016ca 56455aa 7b5f2bf 56455aa 07016ca 56455aa 07016ca 91d2a21 56455aa 07016ca 7b5f2bf 07016ca 7b5f2bf 56455aa 7b5f2bf 56455aa 7b5f2bf 56455aa 7b5f2bf 56455aa 07016ca 56455aa 91d2a21 ba50457 07016ca 56455aa 07016ca ba50457 91d2a21 56455aa 07016ca 56455aa 07016ca 56455aa 07016ca 62b53a3 07016ca 56455aa 07016ca 56455aa ba50457 7b5f2bf ba50457 7b5f2bf ba50457 07016ca 56455aa 7b5f2bf 56455aa 07016ca 56455aa 07016ca 91d2a21 56455aa 7b5f2bf 56455aa 7b5f2bf 56455aa 07016ca 56455aa 91d2a21 ba50457 07016ca 7b5f2bf ba50457 56455aa 07016ca 56455aa ba50457 7b5f2bf ba50457 7b5f2bf ba50457 7b5f2bf 94d6aac 7b5f2bf ba50457 56455aa 7b5f2bf ba50457 07016ca 7b5f2bf ba50457 56455aa ba50457 7b5f2bf ba50457 7b5f2bf ba50457 7b5f2bf ba50457 56455aa 7b5f2bf ba50457 62b53a3 56455aa 62b53a3 56455aa 62b53a3 56455aa 62b53a3 56455aa 62b53a3 56455aa 62b53a3 07016ca 56455aa 07016ca 91d2a21 c6beb28 365a345 56455aa 365a345 56455aa 365a345 56455aa 365a345 56455aa 365a345 56455aa 365a345 56455aa 365a345 ba50457 07016ca 56455aa 07016ca 56455aa 07016ca ba50457 07016ca ba50457 07016ca ba50457 07016ca ba50457 56455aa ba50457 07016ca ba50457 07016ca ba50457 07016ca ba50457 07016ca ba50457 07016ca ba50457 56455aa 91d2a21 07016ca 56455aa 07016ca 56455aa 07016ca 91d2a21 07016ca 91d2a21 56455aa 91d2a21 07016ca 91d2a21 56455aa 91d2a21 19b1ede 07016ca 91d2a21 56455aa 07016ca ba50457 07016ca ba50457 07016ca 56455aa 07016ca 56455aa c6beb28 91d2a21 c6beb28 91d2a21 56455aa ba50457 91d2a21 ba50457 56455aa 91d2a21 07016ca 91d2a21 07016ca 91d2a21 56455aa ba50457 07016ca ba50457 56455aa 07016ca ba50457 91d2a21 ba50457 91d2a21 ba50457 07016ca ba50457 07016ca ba50457 56455aa 91d2a21 07016ca 56455aa 07016ca 56455aa 07016ca 91d2a21 07016ca 91d2a21 56455aa 91d2a21 07016ca 91d2a21 56455aa 91d2a21 19b1ede 07016ca 91d2a21 56455aa 07016ca ba50457 07016ca ba50457 07016ca 56455aa 07016ca 56455aa c6beb28 91d2a21 c6beb28 91d2a21 56455aa ba50457 91d2a21 ba50457 56455aa 91d2a21 07016ca 91d2a21 07016ca 91d2a21 56455aa ba50457 07016ca ba50457 56455aa 07016ca ba50457 91d2a21 ba50457 91d2a21 ba50457 91d2a21 07016ca 846c1ec 56455aa 846c1ec 56455aa c6beb28 56455aa c6beb28 91d2a21 07016ca f8230de 07016ca f8230de ba50457 b73721f ba50457 ea7ce73 f4c3fca 7cea8a7 ba50457 b73721f f4c3fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
import os
import gradio as gr
import json
import plotly.express as px
import pandas as pd
from typing import Tuple, Dict, Optional, List
import logging
logger = logging.getLogger(__name__)
# Import from our modules
from utils import (
validate_apex_syntax, perform_skeptical_evaluation, extract_code_blocks,
format_structured_explanation, format_object_conversion_explanation,
extract_validation_metrics, normalize_metrics, generate_test_cases,
VALIDATION_SCHEMA, B2B_COMMERCE_PATTERNS, logger
)
from api_client import (
all_models, together_models, anthropic_models, call_llm
)
def correct_apex_trigger(model: str, trigger_code: str, progress=None) -> Tuple[str, str, str]:
"""Correct Apex Trigger with skeptical evaluation."""
if progress:
progress(0.1, desc="Validating input...")
# Input validation
if not trigger_code.strip():
return "Please provide Apex Trigger code to correct.", "", ""
if len(trigger_code.strip()) < 50:
return "Code too short to be a valid Apex trigger. Please provide complete code.", "", ""
# Perform initial syntax check
is_valid, syntax_issues = validate_apex_syntax(trigger_code)
if progress:
progress(0.3, desc="Analyzing code structure...")
# Perform skeptical evaluation
evaluation = perform_skeptical_evaluation(trigger_code, "trigger")
# Build comprehensive prompt with structured output format
prompt = f"""
Correct this Apex Trigger for B2B Lightning Experience migration. Be BRIEF and DIRECT.
ORIGINAL CODE:
```apex
{trigger_code}
```
DETECTED ISSUES:
- Syntax Errors: {len(syntax_issues)}
- Security Issues: {len(evaluation['security_concerns'])}
- Performance Issues: {len(evaluation['performance_issues'])}
- B2B Commerce Issues: {len(evaluation['b2b_commerce_issues'])}
PROVIDE EXACTLY THIS FORMAT:
## CORRECTED CODE
```apex
[Put the complete corrected trigger here with inline comments for changes]
```
## KEY CHANGES (bullet points only)
- [Change 1: Brief description]
- [Change 2: Brief description]
- [Maximum 7 bullet points]
## CRITICAL ISSUES FIXED
1. [Most important issue]: [One-line explanation]
2. [Second issue]: [One-line explanation]
3. [Third issue]: [One-line explanation]
## REMAINING WARNINGS
- [Any issues that need manual review]
BE CONCISE. NO VERBOSE EXPLANATIONS. FOCUS ON CODE QUALITY.
"""
if progress:
progress(0.5, desc="Calling AI model...")
response = call_llm(model, prompt, temperature=0.2) # Even lower temperature for consistency
if progress:
progress(0.8, desc="Processing response...")
# Extract code and explanations
code_output = extract_code_blocks(response)
# Validate the corrected code
validation_warnings = []
if code_output:
corrected_valid, corrected_issues = validate_apex_syntax(code_output)
if not corrected_valid:
error_count = len([i for i in corrected_issues if i["type"] == "error"])
warning_count = len([i for i in corrected_issues if i["type"] == "warning"])
validation_warnings.append(f"β οΈ Validation: {error_count} errors, {warning_count} warnings remain")
# Extract structured explanation
explanation = format_structured_explanation(response, code_output)
# Add validation warnings if any
if validation_warnings:
explanation = "\n".join(validation_warnings) + "\n\n" + explanation
# Add test case reference (brief)
explanation += "\n\n**Test Template:** Available in Full Response section"
if progress:
progress(1.0, desc="Complete!")
return response, code_output, explanation
def convert_cc_object(model: str, cc_object_code: str, progress=None) -> Tuple[str, str, str]:
"""Convert CloudCraze Object with skeptical evaluation."""
if progress:
progress(0.1, desc="Validating input...")
# Input validation
if not cc_object_code.strip():
return "Please provide CloudCraze Object code to convert.", "", ""
if len(cc_object_code.strip()) < 30:
return "Code too short to be a valid CloudCraze object. Please provide complete code.", "", ""
if progress:
progress(0.3, desc="Analyzing CloudCraze structure...")
# Check for CloudCraze patterns
import re
has_cc_pattern = bool(re.search(B2B_COMMERCE_PATTERNS["cloudcraze_reference"], cc_object_code))
if not has_cc_pattern:
logger.warning("No obvious CloudCraze patterns found in input")
# Perform evaluation
evaluation = perform_skeptical_evaluation(cc_object_code, "object")
prompt = f"""
Convert this CloudCraze Object to B2B Lightning Experience. Be BRIEF and PRECISE.
CLOUDCRAZE OBJECT:
```
{cc_object_code}
```
PROVIDE EXACTLY THIS FORMAT:
## B2B LEX OBJECT MAPPING
- Source: [CloudCraze object name]
- Target: [B2B LEX object name]
- Migration Complexity: [Low/Medium/High]
## CONVERTED CODE
```apex
[Complete B2B LEX implementation with inline comments]
```
## FIELD MAPPINGS (table format)
| CC Field | B2B Field | Type | Notes |
|----------|-----------|------|-------|
| field1 | newField1 | Text | Required |
| field2 | newField2 | Number | Optional |
## MIGRATION STEPS
1. [Step 1 - one line]
2. [Step 2 - one line]
3. [Maximum 5 steps]
## DATA MIGRATION SCRIPT
```apex
[Brief data migration code if needed, otherwise state "Not Required"]
```
## WARNINGS
- [Any manual steps or considerations]
BE CONCISE. FOCUS ON ACTIONABLE INFORMATION.
"""
if progress:
progress(0.5, desc="Calling AI model...")
response = call_llm(model, prompt, temperature=0.2)
if progress:
progress(0.8, desc="Processing response...")
# Extract code and explanations
code_output = extract_code_blocks(response)
# Extract structured explanation
explanation = format_object_conversion_explanation(response, code_output)
# Add brief test reference
explanation += "\n\n**Test Utilities:** See Full Response for test data creation utilities"
if progress:
progress(1.0, desc="Complete!")
return response, code_output, explanation
def validate_apex_trigger(validation_model: str, original_code: str, corrected_code: str) -> str:
"""Enhanced validation with skeptical evaluation and structured output."""
if not validation_model or not original_code.strip() or not corrected_code.strip():
return "Please provide all required inputs for validation."
# Perform syntax validation on both
orig_valid, orig_issues = validate_apex_syntax(original_code)
corr_valid, corr_issues = validate_apex_syntax(corrected_code)
prompt = f"""
Validate this Apex trigger correction. Be CRITICAL but CONCISE.
ORIGINAL ({len(orig_issues)} issues detected):
```apex
{original_code}
```
CORRECTED ({len(corr_issues)} issues detected):
```apex
{corrected_code}
```
PROVIDE THIS EXACT JSON FORMAT:
```json
{{
"quality_rating": [1-10],
"accuracy": [0.0-1.0],
"completeness": [0.0-1.0],
"best_practices_alignment": [0.0-1.0],
"syntax_validity": [0.0-1.0],
"security_score": [0.0-1.0],
"performance_score": [0.0-1.0],
"errors": [
"Error 1: [specific line/issue]",
"Error 2: [specific line/issue]"
],
"warnings": [
"Warning 1: [potential issue]",
"Warning 2: [potential issue]"
],
"suggestions": [
"Improvement 1: [actionable suggestion]",
"Improvement 2: [actionable suggestion]"
]
}}
```
SCORING CRITERIA:
- quality_rating: Overall code quality (1=terrible, 10=excellent)
- accuracy: Correctness of fixes (0=wrong, 1=perfect)
- completeness: All issues addressed (0=none, 1=all)
- best_practices_alignment: Follows Salesforce standards (0=poor, 1=excellent)
- syntax_validity: No syntax errors (0=many errors, 1=error-free)
- security_score: Security best practices (0=vulnerable, 1=secure)
- performance_score: Efficiency and scalability (0=poor, 1=optimal)
BE HARSH. FIND PROBLEMS. Maximum 3 items per category.
"""
return call_llm(validation_model, prompt, temperature=0.1) # Very low temperature for consistent JSON
def validate_cc_object_conversion(validation_model: str, original_object: str, converted_object: str) -> str:
"""Enhanced validation for CloudCraze object conversion with structured output."""
if not validation_model or not original_object.strip() or not converted_object.strip():
return "Please provide all required inputs for validation."
prompt = f"""
Validate this CloudCraze to B2B LEX conversion. Be CRITICAL and BRIEF.
ORIGINAL CLOUDCRAZE:
```
{original_object}
```
CONVERTED B2B LEX:
```
{converted_object}
```
PROVIDE THIS EXACT JSON FORMAT:
```json
{{
"quality_rating": [1-10],
"accuracy": [0.0-1.0],
"completeness": [0.0-1.0],
"best_practices_alignment": [0.0-1.0],
"syntax_validity": [0.0-1.0],
"security_score": [0.0-1.0],
"performance_score": [0.0-1.0],
"errors": [
"Missing field: [field_name]",
"Wrong mapping: [issue]"
],
"warnings": [
"Data type mismatch: [field]",
"Custom logic not migrated: [what]"
],
"suggestions": [
"Add validation for: [field]",
"Consider indexing: [field]"
]
}}
```
FOCUS ON:
1. Missing field mappings
2. Data type conversions
3. Relationship integrity
4. Custom field handling
5. Performance at scale
BE HARSH. Maximum 3 items per category. Focus on REAL issues.
"""
return call_llm(validation_model, prompt, temperature=0.1)
def create_enhanced_radar_chart(metrics: Optional[Dict[str, float]]) -> Optional[object]:
"""Create an enhanced radar chart with more metrics."""
if not metrics:
return None
# Create data for the radar chart
categories = [
"Quality",
"Accuracy",
"Completeness",
"Best Practices",
"Syntax Valid",
"Security",
"Performance"
]
values = [
metrics.get("quality_rating", 0) / 10, # Normalize to 0-1 scale
metrics.get("accuracy", 0),
metrics.get("completeness", 0),
metrics.get("best_practices_alignment", 0),
metrics.get("syntax_validity", 0),
metrics.get("security_score", 0),
metrics.get("performance_score", 0)
]
# Create a DataFrame for plotting
df = pd.DataFrame({
'Category': categories,
'Value': values
})
# Create the radar chart
fig = px.line_polar(
df, r='Value', theta='Category', line_close=True,
range_r=[0, 1], title="Comprehensive Validation Assessment"
)
fig.update_traces(fill='toself', fillcolor='rgba(0, 100, 255, 0.2)')
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)
),
showlegend=False,
height=400
)
return fig
def get_theme_styles(theme_choice: str) -> Tuple[str, str, str, str]:
"""Get theme styles for different UI elements."""
themes = {
"Dark": {
"explanation": "background-color: #1e1e1e; color: #e0e0e0; padding: 15px; border-radius: 8px; font-family: 'Inter', sans-serif; line-height: 1.6;",
"code": "background-color: #0d1117; color: #c9d1d9; font-family: 'Fira Code', 'Consolas', monospace; padding: 15px; border-radius: 8px; border: 1px solid #30363d; font-size: 14px; line-height: 1.5;",
"validation": "background-color: #161b22; color: #c9d1d9; padding: 15px; border-radius: 8px; border: 1px solid #30363d;",
"error": "background-color: #3d1418; color: #f85149; padding: 10px; border-radius: 5px; border: 1px solid #f85149;"
},
"Light": {
"explanation": "background-color: #ffffff; color: #24292e; padding: 15px; border-radius: 8px; border: 1px solid #e1e4e8; font-family: 'Inter', sans-serif; line-height: 1.6;",
"code": "background-color: #f6f8fa; color: #24292e; font-family: 'Fira Code', 'Consolas', monospace; padding: 15px; border-radius: 8px; border: 1px solid #e1e4e8; font-size: 14px; line-height: 1.5;",
"validation": "background-color: #f6f8fa; color: #24292e; padding: 15px; border-radius: 8px; border: 1px solid #e1e4e8;",
"error": "background-color: #ffe4e6; color: #d73a49; padding: 10px; border-radius: 5px; border: 1px solid #d73a49;"
}
}
theme = themes.get(theme_choice, themes["Light"])
return (theme["explanation"], theme["code"], theme["explanation"], theme["code"])
# Wrapper functions with proper error handling
def trigger_correction_wrapper(model, code):
"""Wrapper for trigger correction with proper error handling."""
try:
if not model or not code.strip():
return "Please select a model and provide code.", "", "Please provide valid inputs."
# Create dummy progress function since Gradio progress doesn't work in lambda
def dummy_progress(value, desc=""):
pass
return correct_apex_trigger(model, code, progress=dummy_progress)
except Exception as e:
logger.error(f"Trigger correction error: {str(e)}")
error_msg = f"Error processing request: {str(e)}"
return error_msg, "", error_msg
def object_conversion_wrapper(model, code):
"""Wrapper for object conversion with proper error handling."""
try:
if not model or not code.strip():
return "Please select a model and provide code.", "", "Please provide valid inputs."
def dummy_progress(value, desc=""):
pass
return convert_cc_object(model, code, progress=dummy_progress)
except Exception as e:
logger.error(f"Object conversion error: {str(e)}")
error_msg = f"Error processing request: {str(e)}"
return error_msg, "", error_msg
def validate_and_chart_trigger(model, original, corrected):
"""Wrapper for trigger validation with error handling."""
try:
if not model or not original.strip() or not corrected.strip():
return "Please provide all required inputs for validation.", None
validation_text = validate_apex_trigger(model, original, corrected)
metrics = extract_validation_metrics(validation_text)
chart = create_enhanced_radar_chart(metrics) if metrics else None
return validation_text, chart
except Exception as e:
logger.error(f"Trigger validation error: {str(e)}")
return f"Validation error: {str(e)}", None
def validate_and_chart_object(model, original, converted):
"""Wrapper for object validation with error handling."""
try:
if not model or not original.strip() or not converted.strip():
return "Please provide all required inputs for validation.", None
validation_text = validate_cc_object_conversion(model, original, converted)
metrics = extract_validation_metrics(validation_text)
chart = create_enhanced_radar_chart(metrics) if metrics else None
return validation_text, chart
except Exception as e:
logger.error(f"Object validation error: {str(e)}")
return f"Validation error: {str(e)}", None
def main():
"""Main application entry point."""
with gr.Blocks(
title="Salesforce B2B Commerce Migration Assistant",
theme=gr.themes.Soft(primary_hue="blue"),
css="""
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}
.gr-button-primary {
background-color: #0969da !important;
}
.gr-button-primary:hover {
background-color: #0860ca !important;
}
code {
font-family: 'Fira Code', 'Consolas', 'Monaco', monospace;
}
"""
) as app:
gr.Markdown("# π Salesforce B2B Commerce Migration Assistant")
gr.Markdown("Advanced tool for migrating CloudCraze code to B2B Lightning Experience with skeptical AI validation.")
# Model selection
with gr.Row():
with gr.Column():
gr.Markdown("### π€ Primary Model")
primary_model_dropdown = gr.Dropdown(
choices=all_models,
value=anthropic_models[0],
label="Select Primary AI Model for Conversion",
info="This model performs the initial code conversion"
)
with gr.Column():
gr.Markdown("### π Validation Model")
validation_model_dropdown = gr.Dropdown(
choices=all_models,
value=anthropic_models[1],
label="Select Validation AI Model for Review",
info="This model skeptically reviews and validates the output"
)
with gr.Tab("β‘ Apex Trigger Correction"):
gr.Markdown("### Apex Trigger Correction & Optimization")
gr.Markdown("Paste your Apex Trigger code for analysis, correction, and optimization.")
trigger_input = gr.Textbox(
lines=15,
placeholder="Paste your Apex Trigger code here...\n\nExample:\ntrigger AccountTrigger on Account (before insert, before update) {\n // Your trigger logic\n}",
label="Apex Trigger Code",
elem_classes="code-input"
)
with gr.Row():
trigger_button = gr.Button("π§ Correct & Optimize", variant="primary", size="lg")
copy_code_button = gr.Button("π Copy Code", variant="secondary")
# Progress indicator
trigger_progress = gr.Textbox(label="Progress", visible=False)
with gr.Accordion("π Full Model Response", open=False):
trigger_full_response = gr.Textbox(
lines=20,
label="Full Model Response",
interactive=False
)
with gr.Row():
with gr.Column():
trigger_explanation = gr.Textbox(
lines=15,
label="π Explanation & Analysis",
placeholder="Detailed explanation will appear here...",
interactive=False,
elem_id="trigger_explanation"
)
with gr.Column():
trigger_code_output = gr.Code(
language="python", # Using python highlighting as java is not supported
label="β
Corrected Code (Apex)",
value="// Corrected Apex code will appear here",
elem_id="trigger_code_output"
)
gr.Markdown("### π― Validation Results")
with gr.Row():
with gr.Column(scale=2):
trigger_validation_output = gr.Textbox(
lines=20,
label="π Skeptical Validation Assessment",
placeholder="Validation results will appear here...",
interactive=True,
elem_id="trigger_validation"
)
with gr.Column(scale=1):
trigger_chart = gr.Plot(label="π Validation Metrics")
validate_trigger_button = gr.Button("π Validate Correction", variant="secondary", size="lg")
# Wire up functionality - INSIDE the main function where UI elements are defined
trigger_button.click(
fn=trigger_correction_wrapper,
inputs=[primary_model_dropdown, trigger_input],
outputs=[trigger_full_response, trigger_code_output, trigger_explanation],
show_progress=True
)
validate_trigger_button.click(
fn=validate_and_chart_trigger,
inputs=[validation_model_dropdown, trigger_input, trigger_code_output],
outputs=[trigger_validation_output, trigger_chart],
show_progress=True
)
copy_code_button.click(
fn=lambda: gr.Info("Code copied! Use Ctrl+C/Cmd+C if automatic copy fails."),
inputs=[],
outputs=[]
)
with gr.Row():
trigger_clear = gr.Button("ποΈ Clear Input")
trigger_clear.click(lambda: "", [], trigger_input)
results_clear = gr.Button("π§Ή Clear Results")
results_clear.click(
lambda: ["", "", "", "", None],
[],
[trigger_full_response, trigger_code_output, trigger_explanation, trigger_validation_output, trigger_chart]
)
with gr.Tab("π CloudCraze Object Conversion"):
gr.Markdown("### CloudCraze to B2B Lightning Experience Object Conversion")
gr.Markdown("Convert CloudCraze custom objects to B2B Lightning Experience format.")
object_input = gr.Textbox(
lines=15,
placeholder="Paste your CloudCraze Object definition here...\n\nExample:\nE_Product__c fields, relationships, and custom logic",
label="CloudCraze Object Code",
elem_classes="code-input"
)
with gr.Row():
object_button = gr.Button("π Convert Object", variant="primary", size="lg")
object_copy_code_button = gr.Button("π Copy Code", variant="secondary")
# Progress indicator
object_progress = gr.Textbox(label="Progress", visible=False)
with gr.Accordion("π Full Model Response", open=False):
object_full_response = gr.Textbox(
lines=20,
label="Full Model Response",
interactive=False
)
with gr.Row():
with gr.Column():
object_explanation = gr.Textbox(
lines=15,
label="π Conversion Explanation",
placeholder="Detailed explanation will appear here...",
interactive=False,
elem_id="object_explanation"
)
with gr.Column():
object_code_output = gr.Code(
language="python", # Using python highlighting as java is not supported
label="β
Converted Code (B2B LEX)",
value="// Converted B2B Lightning Experience code will appear here",
elem_id="object_code_output"
)
gr.Markdown("### π― Validation Results")
with gr.Row():
with gr.Column(scale=2):
object_validation_output = gr.Textbox(
lines=20,
label="π Skeptical Validation Assessment",
placeholder="Validation results will appear here...",
interactive=True,
elem_id="object_validation"
)
with gr.Column(scale=1):
object_chart = gr.Plot(label="π Validation Metrics")
validate_object_button = gr.Button("π Validate Conversion", variant="secondary", size="lg")
# Wire up functionality - INSIDE the main function where UI elements are defined
object_button.click(
fn=object_conversion_wrapper,
inputs=[primary_model_dropdown, object_input],
outputs=[object_full_response, object_code_output, object_explanation],
show_progress=True
)
validate_object_button.click(
fn=validate_and_chart_object,
inputs=[validation_model_dropdown, object_input, object_code_output],
outputs=[object_validation_output, object_chart],
show_progress=True
)
object_copy_code_button.click(
fn=lambda: gr.Info("Code copied! Use Ctrl+C/Cmd+C if automatic copy fails."),
inputs=[],
outputs=[]
)
with gr.Row():
object_clear = gr.Button("ποΈ Clear Input")
object_clear.click(lambda: "", [], object_input)
object_results_clear = gr.Button("π§Ή Clear Results")
object_results_clear.click(
lambda: ["", "", "", "", None],
[],
[object_full_response, object_code_output, object_explanation, object_validation_output, object_chart]
)
# UI Preferences
with gr.Accordion("βοΈ UI Preferences", open=False):
theme_radio = gr.Radio(
label="π¨ Theme",
choices=["Light", "Dark"],
value="Light"
)
# Comment out theme functionality for now to avoid conflicts
# theme_radio.change(
# fn=get_theme_styles,
# inputs=[theme_radio],
# outputs=[
# trigger_explanation,
# trigger_code_output,
# object_explanation,
# object_code_output
# ]
# )
gr.Markdown("### π About This Tool")
gr.Markdown(
"""
**π Enhanced Features:**
- **Skeptical AI Evaluation**: Models actively search for syntax errors, security issues, and performance problems
- **Comprehensive Validation**: 7-metric assessment including syntax, security, and performance
- **Edge Case Detection**: Identifies governor limits, bulkification issues, and B2B Commerce pitfalls
- **Test Case Generation**: Automatic test class templates for migrated code
- **Enhanced Error Detection**: Pattern-based syntax validation before AI processing
**π€ Model Roles:**
- **Primary Model**: Performs initial conversion with skeptical analysis
- **Validation Model**: Double-checks work with harsh but fair evaluation
**β οΈ Important**: Always review and test AI-generated code in a sandbox before production deployment.
"""
)
app.launch()
#return app
if __name__ == "__main__":
main()
# print("β
Initializing Salesforce Migration Assistant")
# app = main()
# print("β
Application instance created")
# if __name__ == "__main__":
# port = int(os.environ.get("PORT", 8080))
# print(f"π Starting server on port {port}")
# try:
# app.launch(
# server_name="0.0.0.0",
# server_port=port,
# share=False
# )
# except Exception as e:
# print(f"π₯ Server failed to start: {str(e)}")
# raise
# print("β
Server started successfully")
|