prerana-manoj123's picture
Update app.py
d1f2c03
raw
history blame
1.28 kB
import tensorflow as tf
from tensorflow.keras.applications import EfficientNetB0
efficient_net = EfficientNetB0(weights='imagenet',include_top=False,input_shape=(150, 150, 3))
model = efficient_net.output
model = tf.keras.layers.GlobalAveragePooling2D()(model)
model = tf.keras.layers.Dense(64, activation='relu')(model)
model = tf.keras.layers.Dropout(rate=0.1)(model)
model = tf.keras.layers.Dense(32, activation='relu')(model)
model = tf.keras.layers.Dropout(rate=0.1)(model)
model = tf.keras.layers.Dense(2, activation='sigmoid')(model)
model = tf.keras.models.Model(inputs=efficient_net.input, outputs=model)
model.compile(loss='binary_crossentropy',optimizer = 'Adam', metrics= ['accuracy'])
model.load_weights('./checkpoint')
import gradio as gr
def cardiomegaly(img):
img = img.reshape(1, 150, 150, 3)
prediction = model.predict(img).tolist()[0]
class_names = ["False", "True"]
return {class_names[i]: prediction[i] for i in range(2)}
#set the user uploaded image as the input array
#match same shape as the input shape in the model
im = gr.inputs.Image(shape=(150, 150), image_mode='RGB', invert_colors=False, source="upload")
#setup the interface
gr.Interface(
fn = cardiomegaly,
inputs = im,
outputs = gr.outputs.Label(),
).launch()