Spaces:
Running
Running
# π MODEL DESIGNATION: | |
# Figure2CNN is validated ONLY for RAMAN spectra input. | |
# Any use for FTIR modeling is invalid and deprecated. | |
# See milestone: @figure2cnn-raman-only-milestone | |
import torch | |
import torch.nn as nn | |
class Figure2CNN(nn.Module): | |
""" | |
CNN architecture based on Figure 2 of the referenced research paper. | |
Designed for 1D spectral data input of length 500 | |
""" | |
def __init__(self, input_length=500, input_channels=1): | |
super(Figure2CNN, self).__init__() | |
self.input_channels = input_channels | |
self.conv_block = nn.Sequential( | |
nn.Conv1d(input_channels, 16, kernel_size=5, padding=2), | |
nn.ReLU(), | |
nn.MaxPool1d(kernel_size=2), | |
nn.Conv1d(16, 32, kernel_size=5, padding=2), | |
nn.ReLU(), | |
nn.MaxPool1d(kernel_size=2), | |
nn.Conv1d(32, 64, kernel_size=5, padding=2), | |
nn.ReLU(), | |
nn.MaxPool1d(kernel_size=2), | |
nn.Conv1d(64, 128, kernel_size=5, padding=2), | |
nn.ReLU(), | |
nn.MaxPool1d(kernel_size=2), | |
) | |
# Dynamically calculate flattened size after conv + pooling | |
self.flattened_size = self._get_flattened_size(input_channels, input_length) | |
self.classifier = nn.Sequential( | |
nn.Linear(self.flattened_size, 256), | |
nn.ReLU(), | |
nn.Linear(256, 128), | |
nn.ReLU(), | |
nn.Linear(128, 2) # Binary output | |
) | |
def _get_flattened_size(self,input_channels, input_length): | |
with torch.no_grad(): | |
dummy_input = torch.zeros(1, input_channels, input_length) | |
out = self.conv_block(dummy_input) | |
return out.view(1, -1).shape[1] | |
def forward(self, x): | |
""" | |
Defines the forward pass of the Figure2CNN model. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch_size, channels, input_length). | |
Returns: | |
torch.Tensor: Output tensor containing class scores. | |
""" | |
x = self.conv_block(x) | |
x = x.view(x.size(0), -1) # Flatten | |
return self.classifier(x) | |
def describe_model(self): | |
"""Print architecture and flattened size (for debug). """ | |
print(r"\n Model Summary:") | |
print(r" - Conv Block: 4 Layers") | |
print(f" - Input length: {self.flattened_size} after conv/pool") | |
print(f" - Classifier: {self.classifier}\n") | |