# models/resnet18_vision.py # 1D ResNet-18 style model for spectra: input (B, 1, L) import torch import torch.nn as nn from typing import Callable, List class BasicBlock1D(nn.Module): expansion = 1 def __init__(self, in_planes: int, planes: int, stride: int = 1, downsample: nn.Module | None = None): super().__init__() self.conv1 = nn.Conv1d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm1d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv1d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm1d(planes) self.downsample = downsample def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out def _make_layer(block: Callable[..., nn.Module], in_planes: int, planes: int, blocks: int, stride: int) -> nn.Sequential: downsample = None if stride != 1 or in_planes != planes * block.expansion: downsample = nn.Sequential( nn.Conv1d(in_planes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm1d(planes * block.expansion), ) layers: List[nn.Module] = [block(in_planes, planes, stride, downsample)] in_planes = planes * block.expansion for _ in range(1, blocks): layers.append(block(in_planes, planes)) return nn.Sequential(*layers) class ResNet18Vision(nn.Module): def __init__(self, input_length: int = 500, num_classes: int = 2): super().__init__() # 1D stem self.conv1 = nn.Conv1d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm1d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) # ResNet-18: 2 blocks per layer self.layer1 = _make_layer(BasicBlock1D, 64, 64, blocks=2, stride=1) self.layer2 = _make_layer(BasicBlock1D, 64, 128, blocks=2, stride=2) self.layer3 = _make_layer(BasicBlock1D, 128, 256, blocks=2, stride=2) self.layer4 = _make_layer(BasicBlock1D, 256, 512, blocks=2, stride=2) # Global pooling + classifier self.avgpool = nn.AdaptiveAvgPool1d(1) self.fc = nn.Linear(512 * BasicBlock1D.expansion, num_classes) # Kaiming init for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm1d, nn.GroupNorm)): nn.init.ones_(m.weight); nn.init.zeros_(m.bias) def forward(self, x: torch.Tensor) -> torch.Tensor: # x: (B, 1, L) x = self.relu(self.bn1(self.conv1(x))) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) # (B, C, 1) x = torch.flatten(x, 1) # (B, C) x = self.fc(x) # (B, num_classes) return x