Spaces:
Sleeping
Sleeping
File size: 33,407 Bytes
769dd6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"outputs": [],
"source": [
"# Fake News Detection using BERT-BiLSTM-Attention\n",
"\n",
"This notebook is optimized for Google Colab free version with the following optimizations:\n",
"- Reduced model size\n",
"- Optimized memory usage\n",
"- Efficient data loading\n",
"- Gradient checkpointing\n",
"- Mixed precision training\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"outputs": [],
"source": [
"## 1. Setup and Installation\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install required packages\n",
"!pip install torch==2.0.1 transformers==4.30.2 nltk==3.8.1 pandas==2.0.3 numpy==1.24.3 scikit-learn==1.3.0 tqdm==4.65.0\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import required libraries\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from transformers import BertModel, BertTokenizer\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n",
"import nltk\n",
"from nltk.tokenize import word_tokenize\n",
"from nltk.corpus import stopwords\n",
"import re\n",
"from tqdm import tqdm\n",
"import gc\n",
"\n",
"# Download NLTK data\n",
"nltk.download('punkt')\n",
"nltk.download('stopwords')\n",
"nltk.download('wordnet')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## 2. Configuration and Constants\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optimized for Colab free version\n",
"class Config:\n",
" # Model parameters\n",
" MAX_SEQUENCE_LENGTH = 128 # Reduced from 256\n",
" VOCAB_SIZE = 10000 # Reduced from 15000\n",
" EMBEDDING_DIM = 64 # Reduced from 128\n",
" HIDDEN_DIM = 128 # Reduced from 256\n",
" \n",
" # Training parameters\n",
" BATCH_SIZE = 4 # Reduced from 8\n",
" NUM_EPOCHS = 2 # Reduced from 3\n",
" LEARNING_RATE = 2e-5\n",
" \n",
" # Dataset parameters\n",
" MAX_SAMPLES = 5000 # Reduced from 10000\n",
" \n",
" # Device configuration\n",
" DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
" \n",
" # Model paths\n",
" MODEL_NAME = 'bert-base-uncased'\n",
" \n",
" # Enable mixed precision\n",
" USE_AMP = True\n",
" \n",
" # Enable gradient checkpointing\n",
" USE_GRADIENT_CHECKPOINTING = True\n",
"\n",
"config = Config()\n",
"print(f\"Using device: {config.DEVICE}\")\n",
"print(f\"CUDA available: {torch.cuda.is_available()}\")\n",
"if torch.cuda.is_available():\n",
" print(f\"GPU: {torch.cuda.get_device_name(0)}\")\n",
" print(f\"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## 3. Data Loading and Preprocessing\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Dataset Sources:\n",
"# 1. Kaggle Fake and Real News Dataset: https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset\n",
"# 2. LIAR Dataset: https://sites.cs.ucsb.edu/~william/data/liar_dataset.zip\n",
"\n",
"import zipfile\n",
"import urllib.request\n",
"import os\n",
"\n",
"def download_datasets():\n",
" \"\"\"Download and prepare the datasets\"\"\"\n",
" \n",
" # Download LIAR dataset\n",
" print(\"Downloading LIAR dataset...\")\n",
" liar_url = \"https://sites.cs.ucsb.edu/~william/data/liar_dataset.zip\"\n",
" liar_zip = \"liar_dataset.zip\"\n",
" \n",
" try:\n",
" urllib.request.urlretrieve(liar_url, liar_zip)\n",
" \n",
" # Extract the zip file\n",
" with zipfile.ZipFile(liar_zip, 'r') as zip_ref:\n",
" zip_ref.extractall(\"liar_dataset/\")\n",
" \n",
" print(\"LIAR dataset downloaded and extracted successfully\")\n",
" os.remove(liar_zip) # Clean up zip file\n",
" \n",
" except Exception as e:\n",
" print(f\"Error downloading LIAR dataset: {e}\")\n",
" \n",
" # For Kaggle dataset, we'll use a sample since direct download requires API key\n",
" print(\"Setting up Kaggle dataset alternative...\")\n",
" try:\n",
" # Try to download a sample of the Kaggle dataset\n",
" kaggle_url = \"https://raw.githubusercontent.com/several27/FakeNewsCorpus/master/news_sample.csv\"\n",
" urllib.request.urlretrieve(kaggle_url, \"kaggle_news_sample.csv\")\n",
" print(\"Kaggle sample dataset downloaded successfully\")\n",
" except Exception as e:\n",
" print(f\"Could not download Kaggle sample: {e}\")\n",
"\n",
"def load_liar_dataset(max_samples=None):\n",
" \"\"\"Load and process LIAR dataset\"\"\"\n",
" try:\n",
" # Load train, validation, and test sets\n",
" train_df = pd.read_csv(\"liar_dataset/train.tsv\", sep='\\t', header=None)\n",
" val_df = pd.read_csv(\"liar_dataset/valid.tsv\", sep='\\t', header=None)\n",
" test_df = pd.read_csv(\"liar_dataset/test.tsv\", sep='\\t', header=None)\n",
" \n",
" # Column names for LIAR dataset\n",
" columns = ['id', 'label', 'statement', 'subjects', 'speaker', 'speaker_job', \n",
" 'state_info', 'party_affiliation', 'barely_true_counts', 'false_counts',\n",
" 'half_true_counts', 'mostly_true_counts', 'pants_on_fire_counts', 'context']\n",
" \n",
" train_df.columns = columns\n",
" val_df.columns = columns\n",
" test_df.columns = columns\n",
" \n",
" # Combine all datasets\n",
" df = pd.concat([train_df, val_df, test_df], ignore_index=True)\n",
" \n",
" # Convert labels to binary (fake/real)\n",
" # Consider 'false', 'barely-true', 'pants-fire' as fake (1)\n",
" # Consider 'true', 'mostly-true', 'half-true' as real (0)\n",
" fake_labels = ['false', 'barely-true', 'pants-fire']\n",
" df['binary_label'] = df['label'].apply(lambda x: 1 if x in fake_labels else 0)\n",
" \n",
" # Use statement as text\n",
" df = df[['statement', 'binary_label']].rename(columns={'statement': 'text', 'binary_label': 'label'})\n",
" \n",
" print(f\"LIAR dataset loaded: {len(df)} samples\")\n",
" return df\n",
" \n",
" except Exception as e:\n",
" print(f\"Error loading LIAR dataset: {e}\")\n",
" return None\n",
"\n",
"def load_kaggle_dataset(max_samples=None):\n",
" \"\"\"Load and process Kaggle dataset\"\"\"\n",
" try:\n",
" df = pd.read_csv(\"kaggle_news_sample.csv\")\n",
" \n",
" # Map labels to binary if needed\n",
" if 'label' in df.columns:\n",
" # Handle different label formats\n",
" if df['label'].dtype == 'object':\n",
" df['label'] = df['label'].map({'FAKE': 1, 'REAL': 0, 'fake': 1, 'real': 0})\n",
" \n",
" # Use appropriate text column\n",
" text_columns = ['text', 'title', 'content', 'article']\n",
" text_col = None\n",
" for col in text_columns:\n",
" if col in df.columns:\n",
" text_col = col\n",
" break\n",
" \n",
" if text_col:\n",
" df = df[[text_col, 'label']].rename(columns={text_col: 'text'})\n",
" \n",
" print(f\"Kaggle dataset loaded: {len(df)} samples\")\n",
" return df\n",
" \n",
" except Exception as e:\n",
" print(f\"Error loading Kaggle dataset: {e}\")\n",
" return None\n",
"\n",
"def load_combined_data(max_samples=config.MAX_SAMPLES):\n",
" \"\"\"Load and combine both datasets\"\"\"\n",
" \n",
" # Download datasets\n",
" download_datasets()\n",
" \n",
" # Load datasets\n",
" liar_df = load_liar_dataset()\n",
" kaggle_df = load_kaggle_dataset()\n",
" \n",
" # Combine datasets\n",
" dfs = []\n",
" if liar_df is not None:\n",
" dfs.append(liar_df)\n",
" print(f\"LIAR dataset: {len(liar_df)} samples\")\n",
" \n",
" if kaggle_df is not None:\n",
" dfs.append(kaggle_df)\n",
" print(f\"Kaggle dataset: {len(kaggle_df)} samples\")\n",
" \n",
" if dfs:\n",
" df = pd.concat(dfs, ignore_index=True)\n",
" print(f\"Combined dataset: {len(df)} samples\")\n",
" else:\n",
" # Fallback to dummy data\n",
" print(\"Creating dummy dataset for testing...\")\n",
" texts = [\n",
" \"President announces new economic policy to boost growth\",\n",
" \"Scientists confirm breakthrough in renewable energy technology\", \n",
" \"False: Celebrities endorse dangerous health treatment\",\n",
" \"Misleading: Government hiding alien contact information\",\n",
" \"Local community rallies to support flood victims\",\n",
" \"Breaking: Major scientific discovery changes understanding of physics\"\n",
" ] * (max_samples // 6)\n",
" \n",
" labels = [0, 0, 1, 1, 0, 0] * (max_samples // 6)\n",
" \n",
" df = pd.DataFrame({\n",
" 'text': texts[:max_samples],\n",
" 'label': labels[:max_samples]\n",
" })\n",
" print(f\"Created dummy dataset with {len(df)} samples\")\n",
" \n",
" # Remove missing values\n",
" df = df.dropna()\n",
" \n",
" # Sample data for faster training if needed\n",
" if max_samples and len(df) > max_samples:\n",
" df = df.sample(n=max_samples, random_state=42)\n",
" print(f\"Sampled to {len(df)} samples for faster training\")\n",
" \n",
" return df\n",
"\n",
"# Text preprocessing\n",
"def preprocess_text(text):\n",
" if pd.isna(text):\n",
" return \"\"\n",
" text = str(text)\n",
" # Convert to lowercase\n",
" text = text.lower()\n",
" # Remove special characters but keep basic punctuation\n",
" text = re.sub(r'[^\\w\\s.,!?]', '', text)\n",
" # Remove extra whitespace\n",
" text = ' '.join(text.split())\n",
" # Limit length to prevent very long texts\n",
" text = text[:1000] # Limit to 1000 characters\n",
" return text\n",
"\n",
"# Load the datasets\n",
"print(\"Loading datasets...\")\n",
"df = load_combined_data()\n",
"print(f\"Final dataset shape: {df.shape}\")\n",
"print(f\"Columns: {df.columns.tolist()}\")\n",
"\n",
"if len(df) > 0:\n",
" print(f\"Sample text: {df.iloc[0]['text'][:100]}...\")\n",
" print(f\"Label distribution:\")\n",
" print(df['label'].value_counts())\n",
" print(f\"Label distribution percentage:\")\n",
" print(df['label'].value_counts(normalize=True) * 100)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Optional: Download Kaggle Dataset Directly (If you have Kaggle API)\n",
"\n",
"If you have Kaggle API credentials, you can download the full dataset by running the following cells. Otherwise, the notebook will use alternative sources.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optional: Kaggle API setup (uncomment and run if you have Kaggle credentials)\n",
"# !pip install kaggle\n",
"# !mkdir -p ~/.kaggle\n",
"# # Upload your kaggle.json file to Colab files, then run:\n",
"# # !cp kaggle.json ~/.kaggle/\n",
"# # !chmod 600 ~/.kaggle/kaggle.json\n",
"\n",
"# Download the full Kaggle dataset (uncomment if you have API access)\n",
"# !kaggle datasets download -d clmentbisaillon/fake-and-real-news-dataset\n",
"# !unzip fake-and-real-news-dataset.zip\n",
"\n",
"def load_full_kaggle_dataset():\n",
" \"\"\"Load the full Kaggle dataset if available\"\"\"\n",
" try:\n",
" # Try to load the full dataset files\n",
" fake_df = pd.read_csv(\"Fake.csv\")\n",
" real_df = pd.read_csv(\"True.csv\")\n",
" \n",
" # Add labels\n",
" fake_df['label'] = 1\n",
" real_df['label'] = 0\n",
" \n",
" # Combine datasets\n",
" df = pd.concat([fake_df, real_df], ignore_index=True)\n",
" \n",
" # Use title + text as the full text\n",
" if 'title' in df.columns and 'text' in df.columns:\n",
" df['full_text'] = df['title'] + \". \" + df['text']\n",
" df = df[['full_text', 'label']].rename(columns={'full_text': 'text'})\n",
" elif 'text' in df.columns:\n",
" df = df[['text', 'label']]\n",
" \n",
" print(f\"Full Kaggle dataset loaded: {len(df)} samples\")\n",
" return df\n",
" \n",
" except Exception as e:\n",
" print(f\"Full Kaggle dataset not available: {e}\")\n",
" return None\n",
"\n",
"# Try to load full Kaggle dataset\n",
"full_kaggle_df = load_full_kaggle_dataset()\n",
"if full_kaggle_df is not None:\n",
" print(\"Using full Kaggle dataset\")\n",
" # Update the df variable to use full dataset\n",
" df = load_combined_data() # This will still use the combined approach if full isn't available\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create dataset class\n",
"class FakeNewsDataset(Dataset):\n",
" def __init__(self, texts, labels, tokenizer, max_length):\n",
" self.texts = texts\n",
" self.labels = labels\n",
" self.tokenizer = tokenizer\n",
" self.max_length = max_length\n",
" \n",
" def __len__(self):\n",
" return len(self.texts)\n",
" \n",
" def __getitem__(self, idx):\n",
" text = str(self.texts[idx])\n",
" label = self.labels[idx]\n",
" \n",
" # Preprocess text\n",
" text = preprocess_text(text)\n",
" \n",
" encoding = self.tokenizer.encode_plus(\n",
" text,\n",
" add_special_tokens=True,\n",
" max_length=self.max_length,\n",
" padding='max_length',\n",
" truncation=True,\n",
" return_attention_mask=True,\n",
" return_tensors='pt'\n",
" )\n",
" \n",
" return {\n",
" 'input_ids': encoding['input_ids'].flatten(),\n",
" 'attention_mask': encoding['attention_mask'].flatten(),\n",
" 'label': torch.tensor(label, dtype=torch.long)\n",
" }\n",
"\n",
"print(\"Dataset class created successfully\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## 4. Model Architecture\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class FakeNewsModel(nn.Module):\n",
" def __init__(self, config):\n",
" super(FakeNewsModel, self).__init__()\n",
" \n",
" # BERT layer\n",
" self.bert = BertModel.from_pretrained(config.MODEL_NAME)\n",
" if config.USE_GRADIENT_CHECKPOINTING:\n",
" self.bert.gradient_checkpointing_enable()\n",
" \n",
" # BiLSTM layer\n",
" self.lstm = nn.LSTM(\n",
" input_size=768, # BERT output size\n",
" hidden_size=config.HIDDEN_DIM,\n",
" num_layers=1,\n",
" batch_first=True,\n",
" bidirectional=True,\n",
" dropout=0.1\n",
" )\n",
" \n",
" # Attention layer\n",
" self.attention = nn.Sequential(\n",
" nn.Linear(config.HIDDEN_DIM * 2, config.HIDDEN_DIM),\n",
" nn.Tanh(),\n",
" nn.Linear(config.HIDDEN_DIM, 1)\n",
" )\n",
" \n",
" # Classification head\n",
" self.classifier = nn.Sequential(\n",
" nn.Dropout(0.3),\n",
" nn.Linear(config.HIDDEN_DIM * 2, 64),\n",
" nn.ReLU(),\n",
" nn.Dropout(0.2),\n",
" nn.Linear(64, 2)\n",
" )\n",
" \n",
" def forward(self, input_ids, attention_mask):\n",
" # BERT\n",
" bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)[0]\n",
" \n",
" # BiLSTM\n",
" lstm_output, _ = self.lstm(bert_output)\n",
" \n",
" # Attention mechanism\n",
" attention_scores = self.attention(lstm_output)\n",
" attention_weights = torch.softmax(attention_scores, dim=1)\n",
" attended_output = torch.sum(attention_weights * lstm_output, dim=1)\n",
" \n",
" # Classification\n",
" logits = self.classifier(attended_output)\n",
" \n",
" return logits\n",
"\n",
"print(\"Model architecture defined successfully\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## 5. Training Functions\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def train_epoch(model, train_loader, optimizer, criterion, scaler, config):\n",
" model.train()\n",
" total_loss = 0\n",
" \n",
" progress_bar = tqdm(train_loader, desc='Training')\n",
" for batch in progress_bar:\n",
" input_ids = batch['input_ids'].to(config.DEVICE)\n",
" attention_mask = batch['attention_mask'].to(config.DEVICE)\n",
" labels = batch['label'].to(config.DEVICE)\n",
" \n",
" optimizer.zero_grad()\n",
" \n",
" if config.USE_AMP and torch.cuda.is_available():\n",
" with torch.cuda.amp.autocast():\n",
" outputs = model(input_ids, attention_mask)\n",
" loss = criterion(outputs, labels)\n",
" \n",
" scaler.scale(loss).backward()\n",
" scaler.step(optimizer)\n",
" scaler.update()\n",
" else:\n",
" outputs = model(input_ids, attention_mask)\n",
" loss = criterion(outputs, labels)\n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" total_loss += loss.item()\n",
" progress_bar.set_postfix({'loss': loss.item()})\n",
" \n",
" # Clear memory\n",
" del input_ids, attention_mask, labels, outputs, loss\n",
" if torch.cuda.is_available():\n",
" torch.cuda.empty_cache()\n",
" \n",
" return total_loss / len(train_loader)\n",
"\n",
"def evaluate(model, val_loader, criterion, config):\n",
" model.eval()\n",
" total_loss = 0\n",
" all_preds = []\n",
" all_labels = []\n",
" \n",
" with torch.no_grad():\n",
" progress_bar = tqdm(val_loader, desc='Evaluating')\n",
" for batch in progress_bar:\n",
" input_ids = batch['input_ids'].to(config.DEVICE)\n",
" attention_mask = batch['attention_mask'].to(config.DEVICE)\n",
" labels = batch['label'].to(config.DEVICE)\n",
" \n",
" outputs = model(input_ids, attention_mask)\n",
" loss = criterion(outputs, labels)\n",
" \n",
" total_loss += loss.item()\n",
" \n",
" preds = torch.argmax(outputs, dim=1)\n",
" all_preds.extend(preds.cpu().numpy())\n",
" all_labels.extend(labels.cpu().numpy())\n",
" \n",
" # Clear memory\n",
" del input_ids, attention_mask, labels, outputs, loss, preds\n",
" if torch.cuda.is_available():\n",
" torch.cuda.empty_cache()\n",
" \n",
" metrics = {\n",
" 'loss': total_loss / len(val_loader),\n",
" 'accuracy': accuracy_score(all_labels, all_preds),\n",
" 'precision': precision_score(all_labels, all_preds, average='weighted'),\n",
" 'recall': recall_score(all_labels, all_preds, average='weighted'),\n",
" 'f1': f1_score(all_labels, all_preds, average='weighted')\n",
" }\n",
" \n",
" return metrics\n",
"\n",
"print(\"Training functions defined successfully\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## 6. Main Training Process\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Setup training\n",
"def setup_training(df, config):\n",
" # Ensure we have valid data\n",
" if df is None or len(df) == 0:\n",
" raise ValueError(\"No valid dataset available\")\n",
" \n",
" print(f\"Dataset info:\")\n",
" print(f\"- Total samples: {len(df)}\")\n",
" print(f\"- Label distribution: {df['label'].value_counts().to_dict()}\")\n",
" \n",
" # Preprocess data\n",
" print(\"Preprocessing text data...\")\n",
" texts = df['text'].apply(preprocess_text).values\n",
" labels = df['label'].values\n",
" \n",
" # Remove empty texts\n",
" valid_indices = [i for i, text in enumerate(texts) if len(text.strip()) > 0]\n",
" texts = texts[valid_indices]\n",
" labels = labels[valid_indices]\n",
" \n",
" print(f\"After preprocessing: {len(texts)} valid samples\")\n",
" \n",
" # Split data\n",
" train_texts, val_texts, train_labels, val_labels = train_test_split(\n",
" texts, labels, test_size=0.2, random_state=42, stratify=labels\n",
" )\n",
" \n",
" print(f\"Data split:\")\n",
" print(f\"- Train samples: {len(train_texts)}\")\n",
" print(f\"- Validation samples: {len(val_texts)}\")\n",
" print(f\"- Train label distribution: {pd.Series(train_labels).value_counts().to_dict()}\")\n",
" print(f\"- Val label distribution: {pd.Series(val_labels).value_counts().to_dict()}\")\n",
" \n",
" # Initialize tokenizer\n",
" print(\"Initializing BERT tokenizer...\")\n",
" tokenizer = BertTokenizer.from_pretrained(config.MODEL_NAME)\n",
" \n",
" # Create datasets\n",
" print(\"Creating datasets...\")\n",
" train_dataset = FakeNewsDataset(train_texts, train_labels, tokenizer, config.MAX_SEQUENCE_LENGTH)\n",
" val_dataset = FakeNewsDataset(val_texts, val_labels, tokenizer, config.MAX_SEQUENCE_LENGTH)\n",
" \n",
" # Create dataloaders\n",
" train_loader = DataLoader(train_dataset, batch_size=config.BATCH_SIZE, shuffle=True)\n",
" val_loader = DataLoader(val_dataset, batch_size=config.BATCH_SIZE)\n",
" \n",
" print(f\"DataLoaders created:\")\n",
" print(f\"- Train batches: {len(train_loader)}\")\n",
" print(f\"- Val batches: {len(val_loader)}\")\n",
" \n",
" # Initialize model\n",
" print(\"Initializing model...\")\n",
" model = FakeNewsModel(config).to(config.DEVICE)\n",
" \n",
" # Count parameters\n",
" total_params = sum(p.numel() for p in model.parameters())\n",
" trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
" print(f\"Model parameters:\")\n",
" print(f\"- Total parameters: {total_params:,}\")\n",
" print(f\"- Trainable parameters: {trainable_params:,}\")\n",
" print(f\"- Model size (MB): {total_params * 4 / 1024 / 1024:.2f}\")\n",
" \n",
" # Initialize optimizer\n",
" optimizer = optim.AdamW(model.parameters(), lr=config.LEARNING_RATE, weight_decay=0.01)\n",
" \n",
" # Initialize loss function\n",
" criterion = nn.CrossEntropyLoss()\n",
" \n",
" # Initialize scaler for mixed precision\n",
" scaler = torch.cuda.amp.GradScaler() if config.USE_AMP and torch.cuda.is_available() else None\n",
" \n",
" return model, train_loader, val_loader, optimizer, criterion, scaler, tokenizer\n",
"\n",
"print(\"Training setup function defined successfully\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Run the complete training pipeline\n",
"def main():\n",
" print(\"Starting fake news detection training...\")\n",
" \n",
" # Setup training\n",
" model, train_loader, val_loader, optimizer, criterion, scaler, tokenizer = setup_training(df, config)\n",
" \n",
" # Training loop\n",
" best_val_loss = float('inf')\n",
" best_val_acc = 0.0\n",
" \n",
" print(f\"Starting training for {config.NUM_EPOCHS} epochs...\")\n",
" \n",
" for epoch in range(config.NUM_EPOCHS):\n",
" print(f'=== Epoch {epoch + 1}/{config.NUM_EPOCHS} ===')\n",
" \n",
" # Train\n",
" train_loss = train_epoch(model, train_loader, optimizer, criterion, scaler, config)\n",
" print(f'Train Loss: {train_loss:.4f}')\n",
" \n",
" # Evaluate\n",
" val_metrics = evaluate(model, val_loader, criterion, config)\n",
" print(f'Val Loss: {val_metrics[\"loss\"]:.4f}')\n",
" print(f'Val Accuracy: {val_metrics[\"accuracy\"]:.4f}')\n",
" print(f'Val Precision: {val_metrics[\"precision\"]:.4f}')\n",
" print(f'Val Recall: {val_metrics[\"recall\"]:.4f}')\n",
" print(f'Val F1: {val_metrics[\"f1\"]:.4f}')\n",
" \n",
" # Save best model\n",
" if val_metrics['accuracy'] > best_val_acc:\n",
" best_val_acc = val_metrics['accuracy']\n",
" best_val_loss = val_metrics['loss']\n",
" torch.save(model.state_dict(), 'best_model_colab.pt')\n",
" print(f'New best model saved! Accuracy: {best_val_acc:.4f}')\n",
" \n",
" # Clear memory\n",
" gc.collect()\n",
" if torch.cuda.is_available():\n",
" torch.cuda.empty_cache()\n",
" \n",
" print('Training completed!')\n",
" print(f'Best validation accuracy: {best_val_acc:.4f}')\n",
" print(f'Best validation loss: {best_val_loss:.4f}')\n",
" \n",
" return model, tokenizer\n",
"\n",
"# Run training\n",
"model, tokenizer = main()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## 7. Model Testing and Prediction\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def predict_single(text, model, tokenizer, config):\n",
" \"\"\"Predict if a single text is fake or real news\"\"\"\n",
" model.eval()\n",
" text = preprocess_text(text)\n",
" \n",
" encoding = tokenizer.encode_plus(\n",
" text,\n",
" add_special_tokens=True,\n",
" max_length=config.MAX_SEQUENCE_LENGTH,\n",
" padding='max_length',\n",
" truncation=True,\n",
" return_attention_mask=True,\n",
" return_tensors='pt'\n",
" )\n",
" \n",
" input_ids = encoding['input_ids'].to(config.DEVICE)\n",
" attention_mask = encoding['attention_mask'].to(config.DEVICE)\n",
" \n",
" with torch.no_grad():\n",
" outputs = model(input_ids, attention_mask)\n",
" probabilities = torch.softmax(outputs, dim=1)\n",
" prediction = torch.argmax(outputs, dim=1)\n",
" confidence = torch.max(probabilities, dim=1)[0]\n",
" \n",
" return {\n",
" 'prediction': prediction.item(),\n",
" 'label': 'FAKE' if prediction.item() == 1 else 'REAL',\n",
" 'confidence': confidence.item(),\n",
" 'probabilities': {\n",
" 'REAL': probabilities[0][0].item(),\n",
" 'FAKE': probabilities[0][1].item()\n",
" }\n",
" }\n",
"\n",
"# Test with sample texts\n",
"test_texts = [\n",
" \"Breaking: Scientists discover new planet in our solar system\",\n",
" \"Local community comes together to help flood victims\",\n",
" \"Shocking: Aliens spotted in downtown area last night\",\n",
" \"Government announces new healthcare policy to benefit citizens\"\n",
"]\n",
"\n",
"print(\"Testing model predictions:\")\n",
"print(\"=\" * 50)\n",
"\n",
"for i, text in enumerate(test_texts, 1):\n",
" result = predict_single(text, model, tokenizer, config)\n",
" print(f\"Text {i}: {text[:60]}...\")\n",
" print(f\"Prediction: {result['label']} (Confidence: {result['confidence']:.3f})\")\n",
" print(f\"Probabilities: REAL={result['probabilities']['REAL']:.3f}, FAKE={result['probabilities']['FAKE']:.3f}\")\n",
" print(\"-\" * 50)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Run the complete training pipeline\n",
"def main():\n",
" print(\"Starting fake news detection training...\")\n",
" \n",
" # Setup training\n",
" model, train_loader, val_loader, optimizer, criterion, scaler, tokenizer = setup_training(df, config)\n",
" \n",
" # Training loop\n",
" best_val_loss = float('inf')\n",
" best_val_acc = 0.0\n",
" \n",
" print(f\"\\nStarting training for {config.NUM_EPOCHS} epochs...\")\n",
" \n",
" for epoch in range(config.NUM_EPOCHS):\n",
" print(f'\\n=== Epoch {epoch + 1}/{config.NUM_EPOCHS} ===')\n",
" \n",
" # Train\n",
" train_loss = train_epoch(model, train_loader, optimizer, criterion, scaler, config)\n",
" print(f'Train Loss: {train_loss:.4f}')\n",
" \n",
" # Evaluate\n",
" val_metrics = evaluate(model, val_loader, criterion, config)\n",
" print(f'Val Loss: {val_metrics[\\\"loss\\\"]:.4f}')\n",
" print(f'Val Accuracy: {val_metrics[\\\"accuracy\\\"]:.4f}')\n",
" print(f'Val Precision: {val_metrics[\\\"precision\\\"]:.4f}')\n",
" print(f'Val Recall: {val_metrics[\\\"recall\\\"]:.4f}')\n",
" print(f'Val F1: {val_metrics[\\\"f1\\\"]:.4f}')\n",
" \n",
" # Save best model\n",
" if val_metrics['accuracy'] > best_val_acc:\n",
" best_val_acc = val_metrics['accuracy']\n",
" best_val_loss = val_metrics['loss']\n",
" torch.save(model.state_dict(), 'best_model_colab.pt')\\n print(f'New best model saved! Accuracy: {best_val_acc:.4f}')\\n \\n # Clear memory\\n gc.collect()\\n if torch.cuda.is_available():\\n torch.cuda.empty_cache()\\n \\n print(f'\\\\nTraining completed!')\\n print(f'Best validation accuracy: {best_val_acc:.4f}')\\n print(f'Best validation loss: {best_val_loss:.4f}')\\n \\n return model, tokenizer\\n\\n# Run training\\nmodel, tokenizer = main()\n"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|