File size: 7,883 Bytes
769dd6f
 
 
 
 
 
 
 
 
b0bc9cf
 
 
 
 
 
 
 
 
 
 
3269b9d
 
 
 
 
 
 
 
769dd6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2febec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769dd6f
2febec8
 
 
 
769dd6f
 
 
2febec8
 
 
769dd6f
 
2febec8
769dd6f
 
2febec8
769dd6f
 
 
 
 
 
 
 
 
 
 
2febec8
769dd6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9ecba9
769dd6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import streamlit as st
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import plotly.express as px
import plotly.graph_objects as go
from transformers import BertTokenizer
import nltk

# Download required NLTK data
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')
try:
    nltk.data.find('corpora/stopwords')
except LookupError:
    nltk.download('stopwords')
try:
    nltk.data.find('tokenizers/punkt_tab')
except LookupError:
    nltk.download('punkt_tab')
try:
    nltk.data.find('corpora/wordnet')
except LookupError:
    nltk.download('wordnet')

# Add project root to Python path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))

from src.models.hybrid_model import HybridFakeNewsDetector
from src.config.config import *
from src.data.preprocessor import TextPreprocessor

# Set page config
st.set_page_config(
    page_title="Fake News Detection",
    page_icon="πŸ“°",
    layout="wide"
)

@st.cache_resource
def load_model_and_tokenizer():
    """Load the model and tokenizer (cached)."""
    # Initialize model
    model = HybridFakeNewsDetector(
        bert_model_name=BERT_MODEL_NAME,
        lstm_hidden_size=LSTM_HIDDEN_SIZE,
        lstm_num_layers=LSTM_NUM_LAYERS,
        dropout_rate=DROPOUT_RATE
    )
    
    # Load trained weights
    state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
    
    # Filter out unexpected keys
    model_state_dict = model.state_dict()
    filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
    
    # Load the filtered state dict
    model.load_state_dict(filtered_state_dict, strict=False)
    model.eval()
    
    # Initialize tokenizer
    tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
    
    return model, tokenizer

@st.cache_resource
def get_preprocessor():
    """Get the text preprocessor (cached)."""
    return TextPreprocessor()

def predict_news(text):
    """Predict if the given news is fake or real."""
    # Get model, tokenizer, and preprocessor from cache
    model, tokenizer = load_model_and_tokenizer()
    preprocessor = get_preprocessor()
    
    # Preprocess text
    processed_text = preprocessor.preprocess_text(text)
    
    # Tokenize
    encoding = tokenizer.encode_plus(
        processed_text,
        add_special_tokens=True,
        max_length=MAX_SEQUENCE_LENGTH,
        padding='max_length',
        truncation=True,
        return_attention_mask=True,
        return_tensors='pt'
    )
    
    # Get prediction
    with torch.no_grad():
        outputs = model(
            encoding['input_ids'],
            encoding['attention_mask']
        )
        probabilities = torch.softmax(outputs['logits'], dim=1)
        prediction = torch.argmax(outputs['logits'], dim=1)
        attention_weights = outputs['attention_weights']
    
    # Convert attention weights to numpy and get the first sequence
    attention_weights_np = attention_weights[0].cpu().numpy()
    
    return {
        'prediction': prediction.item(),
        'label': 'FAKE' if prediction.item() == 1 else 'REAL',
        'confidence': torch.max(probabilities, dim=1)[0].item(),
        'probabilities': {
            'REAL': probabilities[0][0].item(),
            'FAKE': probabilities[0][1].item()
        },
        'attention_weights': attention_weights_np
    }

def plot_confidence(probabilities):
    """Plot prediction confidence."""
    fig = go.Figure(data=[
        go.Bar(
            x=list(probabilities.keys()),
            y=list(probabilities.values()),
            text=[f'{p:.2%}' for p in probabilities.values()],
            textposition='auto',
        )
    ])
    
    fig.update_layout(
        title='Prediction Confidence',
        xaxis_title='Class',
        yaxis_title='Probability',
        yaxis_range=[0, 1]
    )
    
    return fig

def plot_attention(text, attention_weights):
    """Plot attention weights."""
    tokens = text.split()
    attention_weights = attention_weights[:len(tokens)]  # Truncate to match tokens
    
    # Ensure attention weights are in the correct format
    if isinstance(attention_weights, (list, np.ndarray)):
        attention_weights = np.array(attention_weights).flatten()
    
    # Format weights for display
    formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
    
    fig = go.Figure(data=[
        go.Bar(
            x=tokens,
            y=attention_weights,
            text=formatted_weights,
            textposition='auto',
        )
    ])
    
    fig.update_layout(
        title='Attention Weights',
        xaxis_title='Tokens',
        yaxis_title='Attention Weight',
        xaxis_tickangle=45
    )
    
    return fig

def main():
    st.title("πŸ“° Fake News Detection System")
    st.write("""
    This application uses a hybrid deep learning model (BERT + BiLSTM + Attention) 
    to detect fake news articles. Enter a news article below to analyze it.
    """)
    
    # Sidebar
    st.sidebar.title("About")
    st.sidebar.info("""
    This model was developed as part of the Data Mining Laboratory course 
    under the guidance of Dr. Kirti Kumari and is developed by Sourabh Sah.
    
    The model combines:
    - BERT for contextual embeddings
    - BiLSTM for sequence modeling
    - Attention mechanism for interpretability
    """)
    
    # Main content
    st.header("News Analysis")
    
    # Text input
    news_text = st.text_area(
        "Enter the news article to analyze:",
        height=200,
        placeholder="Paste your news article here..."
    )
    
    if st.button("Analyze"):
        if news_text:
            with st.spinner("Analyzing the news article..."):
                # Get prediction
                result = predict_news(news_text)
                
                # Display result
                col1, col2 = st.columns(2)
                
                with col1:
                    st.subheader("Prediction")
                    if result['label'] == 'FAKE':
                        st.error(f"πŸ”΄ This news is likely FAKE (Confidence: {result['confidence']:.2%})")
                    else:
                        st.success(f"🟒 This news is likely REAL (Confidence: {result['confidence']:.2%})")
                
                with col2:
                    st.subheader("Confidence Scores")
                    st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
                
                # Show attention visualization
                st.subheader("Attention Analysis")
                st.write("""
                The attention weights show which parts of the text the model focused on 
                while making its prediction. Higher weights indicate more important tokens.
                """)
                st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
                
                # Show model explanation
                st.subheader("Model Explanation")
                if result['label'] == 'FAKE':
                    st.write("""
                    The model identified this as fake news based on:
                    - Linguistic patterns typical of fake news
                    - Inconsistencies in the content
                    - Attention weights on suspicious phrases
                    """)
                else:
                    st.write("""
                    The model identified this as real news based on:
                    - Credible language patterns
                    - Consistent information
                    - Attention weights on factual statements
                    """)
        else:
            st.warning("Please enter a news article to analyze.")

if __name__ == "__main__":
    main()