File size: 25,880 Bytes
db40891
 
 
 
7e8bc99
 
 
 
 
 
 
 
 
 
 
db40891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e8bc99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db40891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c23100
 
db40891
 
4c23100
db40891
 
 
 
 
 
 
 
 
 
 
 
 
 
4c23100
db40891
 
4c23100
 
 
 
 
 
 
 
 
 
db40891
 
 
4c23100
 
 
 
 
db40891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0910b82
 
 
 
 
 
 
 
 
db40891
0910b82
db40891
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import os
import json
import logging
from datetime import datetime
# Try both import methods
try:
    import google.generativeai as genai
    GENAI_PACKAGE = "generativeai"
except ImportError:
    try:
        import google.genai as genai
        GENAI_PACKAGE = "genai"
    except ImportError:
        logging.error("Failed to import Google AI package")
        raise
import gradio as gr
from tavily import TavilyClient
from dotenv import load_dotenv
from logger_config import setup_logging
from typing import List, Dict, Any, Optional
from utils import (
    validate_response, 
    parse_research_results, 
    format_sources_section, 
    save_markdown_report, 
    convert_to_html
)
# Base server class for MCP
class MCPServer:
    def __init__(self):
        self.test_mode = False

    def process_request(self, request: Dict[str, Any]) -> Dict[str, Any]:
        """Process a research request"""
        raise NotImplementedError("Subclasses must implement process_request")

    def create_interface(self) -> gr.Blocks:
        """Create the Gradio interface"""
        raise NotImplementedError("Subclasses must implement create_interface")

from agents import OrchestratorAgent, PlannerAgent, ReportAgent

# Set up logging
loggers = setup_logging()
server_logger = loggers['server']

class MultiAgentSystem:
    def __init__(self, use_gemini=True, gemini_api_key=None, gemini_model=None, 
                 tavily_api_key=None, openrouter_api_key=None, openrouter_model=None):
        self.use_gemini = use_gemini
        self.gemini_api_key = gemini_api_key
        self.gemini_model = gemini_model
        self.tavily_api_key = tavily_api_key
        self.openrouter_api_key = openrouter_api_key
        self.openrouter_model = openrouter_model

        # Handle different package versions for Gemini configuration
        if use_gemini and gemini_api_key:
            try:
                if GENAI_PACKAGE == "generativeai":
                    genai.configure(api_key=gemini_api_key)
                else:
                    os.environ["GOOGLE_API_KEY"] = gemini_api_key
            except Exception as e:
                server_logger.warning(f"Using fallback configuration method: {str(e)}")
                os.environ["GOOGLE_API_KEY"] = gemini_api_key

        # Initialize agents with version-aware configuration
        agent_kwargs = {
            'use_gemini': use_gemini,
            'api_key': gemini_api_key if use_gemini else openrouter_api_key,
            'openrouter_model': openrouter_model,
            'gemini_model': gemini_model
        }

        # Initialize agents with error handling
        try:
            self.orchestrator = OrchestratorAgent(**agent_kwargs)
            self.planner = PlannerAgent(**agent_kwargs)
            self.report_agent = ReportAgent(**agent_kwargs)
        except Exception as e:
            server_logger.error(f"Failed to initialize agents: {str(e)}")
            raise

        # Initialize Tavily client
        if tavily_api_key:
            self.tavily_client = TavilyClient(api_key=tavily_api_key)
        else:
            self.tavily_client = None

    def web_search(self, query: str) -> List[Dict[str, str]]:
        """Perform web search using Tavily"""
        if not self.tavily_client:
            raise ValueError("Tavily API key not provided")
        
        try:
            response = self.tavily_client.search(
                query, 
                search_depth="advanced",  # Only 'basic' or 'advanced' are allowed
                max_results=5,  # Limit results to keep responses focused
                async_search=True,  # Use async search for better performance
                timeout=30  # 30 second timeout
            )
            return response.get('results', [])
        except Exception as e:
            server_logger.error(f"Web search failed: {str(e)}")
            raise  # Re-raise the exception to handle it in the calling code
    
    def process_query(self, query: str) -> str:
        """Process a research query using the multi-agent system"""
        try:
            # Step 1: Create a structured research plan
            server_logger.info("Creating research plan...")
            research_plan = self.orchestrator.create_research_plan(query)
            server_logger.info(f"Generated research plan: {json.dumps(research_plan, indent=2)}")
            
            # Step 2: Initialize research process
            all_search_results = []
            MAX_SEARCHES_TOTAL = 30  # Total search limit
            MIN_RESULTS_PER_ITEM = 3  # Minimum results before checking progress
            MAX_ATTEMPTS_PER_ITEM = 2  # Maximum attempts to research each item
            search_count = 0
            seen_urls = set()  # Track seen URLs to avoid duplicates
            
            # Track research attempts for each item to prevent loops
            research_attempts = {}
            
            # Step 3: Conduct initial research
            while search_count < MAX_SEARCHES_TOTAL:
                # Evaluate current progress
                current_results = [r['content'] for r in all_search_results]
                progress = self.orchestrator.evaluate_research_progress(research_plan, current_results)
                
                # Check if we have completed all aspects
                if all(progress.values()):
                    server_logger.info("Research complete - all aspects covered with sufficient depth")
                    break
                
                # Get prioritized list of unfulfilled research needs
                remaining_items = self.planner.prioritize_unfulfilled_requirements(
                    research_plan, 
                    progress,
                    current_results
                )
                
                if not remaining_items:
                    break
                
                # Research each remaining item
                for item_type, research_item in remaining_items:
                    # Check if we've exceeded attempts for this item
                    item_key = f"{item_type}:{research_item}"
                    if research_attempts.get(item_key, 0) >= MAX_ATTEMPTS_PER_ITEM:
                        server_logger.info(f"Reached maximum attempts for {item_key}")
                        continue
                    
                    if search_count >= MAX_SEARCHES_TOTAL:
                        server_logger.info(f"Reached maximum total searches ({MAX_SEARCHES_TOTAL})")
                        break
                    
                    server_logger.info(f"Researching {item_type}: {research_item}")
                    search_queries = self.planner.create_search_strategy(research_item, item_type)
                    
                    # Track this research attempt
                    research_attempts[item_key] = research_attempts.get(item_key, 0) + 1
                    
                    # Conduct searches for this item
                    item_results = []
                    for search_query in search_queries:
                        if search_count >= MAX_SEARCHES_TOTAL:
                            break
                        
                        # Ensure search query is a simple string
                        query_str = str(search_query).strip()
                        if not query_str:
                            continue
                        
                        server_logger.info(f"Searching for: {query_str}")
                        results = self.web_search(query_str)
                        
                        # Deduplicate and filter results
                        new_results = []
                        for result in results:
                            url = result.get('url')
                            content = result.get('content', '').strip()
                            
                            # Skip if URL seen or content too short
                            if not url or url in seen_urls or len(content) < 100:
                                continue
                                
                            # Check if content is relevant to the research item
                            if any(keyword.lower() in content.lower() 
                                  for keyword in research_item.lower().split()):
                                seen_urls.add(url)
                                new_results.append(result)
                        
                        item_results.extend(new_results)
                        search_count += 1
                        
                        # Check if we have enough detailed results for this item
                        if len(item_results) >= MIN_RESULTS_PER_ITEM and all(
                            len(r.get('content', '')) > 200 for r in item_results
                        ):
                            break
                    
                    all_search_results.extend(item_results)
            
            # Step 4: Generate final report
            server_logger.info("Generating final report...")
            contexts, sources = parse_research_results(all_search_results)
            
            # Add research completion statistics
            completion_stats = {
                "total_searches": search_count,
                "unique_sources": len(seen_urls),
                "research_coverage": {k: v for k, v in progress.items()}
            }
            server_logger.info(f"Research stats: {json.dumps(completion_stats, indent=2)}")
            
            report = self.report_agent.generate_report(
                query=query,
                research_plan=research_plan,
                research_results=contexts,
                completion_stats=completion_stats
            )
            
            # Add sources section to the report
            report += "\n\n" + format_sources_section(sources)
            
            return report

        except Exception as e:
            server_logger.error(f"Error in process_query: {str(e)}", exc_info=True)
            raise

# Global UI component for progress tracking
progress_output = None

def create_interface():
    """Create the Gradio interface with API key inputs"""
    global progress_output

    css = """
    .log-container { 
        margin: 16px 0;
    }
    .log-output {
        font-family: monospace;
        white-space: pre !important;
        height: 300px;
        overflow-y: auto;
        background-color: #1e1e1e !important;
        color: #d4d4d4 !important;
        padding: 10px;
        border-radius: 4px;
    }
    .research-progress {
        position: relative;
    }
    .minimize-btn {
        position: absolute;
        right: 10px;
        top: 10px;
    }
    """

    with gr.Blocks(title="Multi-Agent Research System", css=css) as interface:
        gr.Markdown(
            """# Multi-Agent Research System
            
            This system uses multiple AI agents to perform comprehensive research and analysis.
            Please provide your API keys to begin."""
        )

        # Progress tracking container with minimize button
        with gr.Row(elem_classes="log-container"):
            with gr.Column(elem_classes="research-progress"):
                progress_output = gr.Textbox(
                    value="Waiting to begin research...",
                    elem_classes=["log-output"],
                    show_label=False,
                    lines=10,
                    max_lines=20,
                    interactive=False
                )
                minimize_btn = gr.Button("🔽", elem_classes="minimize-btn")

        with gr.Row():
            api_type = gr.Radio(
                choices=["Gemini", "OpenRouter"], 
                label="Choose API Type", 
                value="Gemini",
                info="Select which API to use for the agents"
            )

        with gr.Row():
            with gr.Column():
                gemini_key = gr.Textbox(
                    label="Gemini API Key", 
                    placeholder="Enter your Gemini API key",
                    type="password"
                )
                gemini_model = gr.Dropdown(
                    label="Gemini Model",
                    choices=[
                        "gemini-2.0-flash",
                        "gemini-2.0-flash-lite",
                        "gemini-1.5-pro",
                        "gemini-2.5-pro-preview-05-06",
                        "gemini-2.5-flash-preview-04-17"
                    ],
                    value="gemini-2.0-flash",
                    info="Choose Gemini model version"
                )
            with gr.Column():
                tavily_key = gr.Textbox(
                    label="Tavily API Key (Required)", 
                    placeholder="Enter your Tavily API key",
                    type="password"
                )

        with gr.Row():
            with gr.Column():
                openrouter_key = gr.Textbox(
                    label="OpenRouter API Key", 
                    placeholder="Enter your OpenRouter API key",
                    type="password",
                    visible=False
                )
                openrouter_model = gr.Textbox(
                    label="OpenRouter Model ID", 
                    placeholder="e.g., anthropic/claude-3-opus:beta",
                    info="Enter any valid OpenRouter model ID",
                    value="anthropic/claude-3-opus:beta",
                    visible=False
                )

        query_input = gr.Textbox(
            label="Research Query",
            placeholder="Enter your research question...",
            lines=3,
            info="Enter a detailed research question or topic to investigate"
        )

        submit_btn = gr.Button("Begin Research", variant="primary")
        
        with gr.Row():
            output = gr.Markdown(label="Research Results")
            download_md = gr.File(label="Download Markdown Report", visible=False)
            download_html = gr.File(label="Download HTML Report", visible=False)

        def update_api_visibility(choice):
            if choice == "Gemini":
                return {
                    gemini_key: gr.update(visible=True),
                    gemini_model: gr.update(visible=True),
                    openrouter_key: gr.update(visible=False),
                    openrouter_model: gr.update(visible=False)
                }
            else:
                return {
                    gemini_key: gr.update(visible=False),
                    gemini_model: gr.update(visible=False),
                    openrouter_key: gr.update(visible=True),
                    openrouter_model: gr.update(visible=True)
                }

        def run_research(query, api_type, gemini_key, gemini_model, tavily_key, openrouter_key, openrouter_model):
            try:
                if not tavily_key:
                    server_logger.error("Missing Tavily API key")
                    return gr.update(value="Error: Missing Tavily API key"), "Please provide a Tavily API key for web search capability."
                
                if api_type == "Gemini" and not gemini_key:
                    server_logger.error("Missing Gemini API key")
                    return gr.update(value="Error: Missing Gemini API key"), "Please provide a Gemini API key when using Gemini mode."
                    
                if api_type == "OpenRouter" and not openrouter_key:
                    server_logger.error("Missing OpenRouter API key")
                    return gr.update(value="Error: Missing OpenRouter API key"), "Please provide an OpenRouter API key when using OpenRouter mode."

                # Initialize log capture
                class LogCaptureHandler(logging.Handler):
                    def __init__(self):
                        super().__init__()
                        self.logs = []

                    def emit(self, record):
                        msg = self.format(record)
                        self.logs.append(msg)
                        return gr.update(value="\n".join(self.logs))

                log_handler = LogCaptureHandler()
                log_handler.setFormatter(logging.Formatter('%(levelname)s - %(message)s'))
                server_logger.addHandler(log_handler)

                # Initialize system and run query
                system = MultiAgentSystem(
                    use_gemini=(api_type == "Gemini"),
                    gemini_api_key=gemini_key if api_type == "Gemini" else None,
                    gemini_model=gemini_model if api_type == "Gemini" else None,
                    tavily_api_key=tavily_key,
                    openrouter_api_key=openrouter_key if api_type == "OpenRouter" else None,
                    openrouter_model=openrouter_model if api_type == "OpenRouter" else None
                )

                result = system.process_query(query)
                
                # Save markdown report and get file path
                md_file_path = save_markdown_report(result)
                html_file_path = convert_to_html(result)
                
                server_logger.removeHandler(log_handler)
                return (
                    gr.update(value="\n".join(log_handler.logs)),  # Progress output
                    result,  # Markdown output
                    gr.update(value=md_file_path, visible=True),  # Download markdown button
                    gr.update(value=html_file_path, visible=True)  # Download HTML button
                )

            except Exception as e:
                server_logger.error(f"Research failed: {str(e)}", exc_info=True)
                error_msg = f"ERROR: Research failed: {str(e)}"
                return (
                    gr.update(value=error_msg),  # Progress output
                    error_msg,  # Markdown output
                    gr.update(visible=False),  # Hide download button
                    gr.update(visible=False)   # Hide download button
                )

        # Connect event handlers
        api_type.change(
            fn=update_api_visibility,
            inputs=[api_type],
            outputs=[gemini_key, gemini_model, openrouter_key, openrouter_model]
        )

        submit_btn.click(
            fn=run_research,
            inputs=[
                query_input, api_type, gemini_key, gemini_model, 
                tavily_key, openrouter_key, openrouter_model
            ],
            outputs=[progress_output, output, download_md, download_html],
            show_progress="full"
        )

        gr.Examples(
            examples=[
                ["What are the latest advances in transformer architecture optimizations?"],
                ["Explain the mathematical foundations of diffusion models"],
                ["Compare and analyze different approaches to few-shot learning"]
            ],
            inputs=query_input
        )

    return interface

class GradioMCPServer(MCPServer):
    def __init__(self, use_gemini: bool = True, 
                 gemini_api_key: Optional[str] = None,
                 gemini_model: Optional[str] = None,
                 tavily_api_key: Optional[str] = None,
                 openrouter_api_key: Optional[str] = None,
                 openrouter_model: Optional[str] = None):
        super().__init__()
        self.test_mode = False
        
        # Initialize the multi-agent system
        self.agent_system = MultiAgentSystem(
            use_gemini=use_gemini,
            gemini_api_key=gemini_api_key,
            gemini_model=gemini_model,
            tavily_api_key=tavily_api_key,
            openrouter_api_key=openrouter_api_key,
            openrouter_model=openrouter_model
        )

    def process_request(self, request: Dict[str, Any]) -> Dict[str, Any]:
        """Process research requests and return markdown report"""
        try:
            query = request.get('query', '')
            output_format = request.get('format', 'markdown')
            
            if self.test_mode:
                markdown_text = """# Test Mode Response
                
## Overview
This is a sample report generated in test mode without using API credits.

## Key Findings
1. Test finding one
2. Test finding two

## Test Results
Sample analysis content...
"""
                file_path = save_markdown_report(markdown_text) if output_format == 'markdown' else convert_to_html(markdown_text)
            else:
                # Use multi-agent system to process query
                report, _, _ = self.agent_system.process_query(query)
                file_path = save_markdown_report(report) if output_format == 'markdown' else convert_to_html(report)
                markdown_text = report
                
            # Return response with markdown content and file path
            return {
                "response": markdown_text,
                "file_path": file_path,
                "status": "success"
            }
            
        except Exception as e:
            server_logger.error(f"Error processing request: {str(e)}")
            return {
                "response": f"Error: {str(e)}",
                "file_path": None,
                "status": "error"
            }

    def create_interface(self) -> gr.Blocks:
        """Create the Gradio interface with markdown preview and file download"""
        with gr.Blocks(title="Research Assistant", theme=gr.themes.Soft()) as interface:
            gr.Markdown("# Research Assistant")
            
            with gr.Row():
                with gr.Column(scale=3):
                    query_input = gr.Textbox(
                        label="Research Query",
                        placeholder="Enter your research question...",
                        lines=3
                    )
                with gr.Column(scale=1):
                    test_mode_checkbox = gr.Checkbox(
                        label="Test Mode (No API credits used)",
                        value=False
                    )
            
            submit_btn = gr.Button("Begin Research", variant="primary")
            
            with gr.Row():
                # Preview panel
                report_output = gr.Markdown(label="Research Results")
                # Download panel
                with gr.Column():
                    gr.Markdown("### Download Options")
                    with gr.Row():
                        download_md = gr.File(label="Download Markdown", visible=False)
                        download_html = gr.File(label="Download HTML", visible=False)
            
            def process_query(query: str, test_mode: bool) -> tuple[str, str, str]:
                """Process the query and return markdown content and file paths"""
                try:
                    self.test_mode = test_mode
                    if self.test_mode:
                        markdown_text = """# Test Mode Response
                
## Overview
This is a sample report generated in test mode without using API credits.

## Key Findings
1. Test finding one
2. Test finding two

## Test Results
Sample analysis content..."""
                    else:
                        # Use multi-agent system to process query
                        markdown_text = self.agent_system.process_query(query)
                    
                    # Generate both markdown and HTML files
                    md_path = save_markdown_report(markdown_text)
                    html_path = convert_to_html(markdown_text)
                    
                    # Make download buttons visible and return results
                    return (
                        markdown_text,  # Preview content
                        gr.update(value=md_path, visible=True),  # Markdown download
                        gr.update(value=html_path, visible=True)  # HTML download
                    )
                    
                except Exception as e:
                    server_logger.error(f"Error processing query: {str(e)}")
                    return (
                        f"Error: {str(e)}",  # Error message in preview
                        gr.update(visible=False),  # Hide markdown download
                        gr.update(visible=False)   # Hide HTML download
                    )
            
            # Connect the button to the processing function
            submit_btn.click(
                fn=process_query,
                inputs=[query_input, test_mode_checkbox],
                outputs=[report_output, download_md, download_html]
            )
            
            # Add example queries
            gr.Examples(
                examples=[
                    ["What are the latest advances in transformer architecture optimizations?"],
                    ["Explain the mathematical foundations of diffusion models"],
                    ["Compare and analyze different approaches to few-shot learning"]
                ],
                inputs=query_input
            )
            
        return interface

if __name__ == "__main__":
    try:
        # Configure event loop policy for Windows
        if os.name == 'nt':  # Windows
            import asyncio
            import sys
            if sys.version_info[0] == 3 and sys.version_info[1] >= 8:
                asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())

        server_logger.info("Starting Gradio server")
        interface = create_interface()
        interface.launch(
            server_name="0.0.0.0",
            share=False,
            debug=True,
            prevent_thread_lock=True,  # Allow for proper cleanup
            mcp_server=True,
        )
    except Exception as e:
        server_logger.error(f"Failed to start Gradio server: {str(e)}", exc_info=True)
        raise