Spaces:
Sleeping
Sleeping
File size: 13,507 Bytes
266eee8 e4674b9 266eee8 e4674b9 f3069a1 266eee8 e4674b9 266eee8 e4674b9 266eee8 e4674b9 f3069a1 e4674b9 f3069a1 e4674b9 6d5604d e4674b9 266eee8 e4674b9 266eee8 e4674b9 6d5604d e4674b9 6d5604d e4674b9 266eee8 e4674b9 6d5604d e4674b9 6d5604d e4674b9 f3069a1 e4674b9 f3069a1 e4674b9 f3069a1 e4674b9 f3069a1 e4674b9 f3069a1 e4674b9 266eee8 e4674b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import gradio as gr
import speech_recognition as sr
import requests
import json
import os
from datetime import datetime, timedelta
import tempfile
import io
import base64
from typing import Optional, Dict, Any
import asyncio
import aiohttp
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configuration
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
GOOGLE_CALENDAR_CREDENTIALS = os.getenv("GOOGLE_CALENDAR_CREDENTIALS")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# ElevenLabs configuration
ELEVENLABS_VOICE_ID = "21m00Tcm4TlvDq8ikWAM" # Default voice, can be changed
ELEVENLABS_API_URL = "https://api.elevenlabs.io/v1"
class VoiceAgent:
def __init__(self):
self.recognizer = sr.Recognizer()
# Remove microphone initialization - we'll use Gradio's audio input
async def speech_to_text(self, audio_file) -> str:
"""Convert speech to text using speech_recognition"""
try:
# Handle different audio file types
if audio_file.endswith('.webm') or audio_file.endswith('.wav'):
with sr.AudioFile(audio_file) as source:
audio = self.recognizer.record(source)
text = self.recognizer.recognize_google(audio)
return text
else:
# For other formats, try direct processing
with sr.AudioFile(audio_file) as source:
audio = self.recognizer.record(source)
text = self.recognizer.recognize_google(audio)
return text
except sr.UnknownValueError:
return "Sorry, I couldn't understand the audio. Please try speaking more clearly."
except sr.RequestError as e:
return f"Could not request results from speech recognition service; {e}"
except Exception as e:
return f"Error in speech recognition: {str(e)}"
async def text_to_speech(self, text: str) -> bytes:
"""Convert text to speech using ElevenLabs"""
if not ELEVENLABS_API_KEY:
raise ValueError("ElevenLabs API key not found")
url = f"{ELEVENLABS_API_URL}/text-to-speech/{ELEVENLABS_VOICE_ID}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": ELEVENLABS_API_KEY
}
data = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
async with aiohttp.ClientSession() as session:
async with session.post(url, json=data, headers=headers) as response:
if response.status == 200:
return await response.read()
else:
raise Exception(f"ElevenLabs API error: {response.status}")
async def process_with_mcp(self, user_input: str) -> Dict[str, Any]:
"""Process user input using MCP (Model Context Protocol)"""
# Detect intent
intent = self.detect_intent(user_input)
if intent == "calendar":
return await self.handle_calendar_request(user_input)
else:
return await self.handle_general_question(user_input)
def detect_intent(self, text: str) -> str:
"""Simple intent detection"""
calendar_keywords = ["schedule", "appointment", "meeting", "calendar", "book", "reserve"]
if any(keyword in text.lower() for keyword in calendar_keywords):
return "calendar"
return "general"
async def handle_calendar_request(self, text: str) -> Dict[str, Any]:
"""Handle calendar appointment creation"""
try:
# Extract appointment details using simple parsing
# In a real implementation, you'd use NLP or LLM for better extraction
appointment_data = self.extract_appointment_details(text)
# Create calendar event (simplified - would use Google Calendar API)
event_summary = f"Appointment: {appointment_data.get('title', 'New Meeting')}"
event_time = appointment_data.get('time', 'TBD')
response_text = f"I've scheduled your {event_summary} for {event_time}. Please note: This is a demo - in production, this would create an actual Google Calendar event."
return {
"type": "calendar",
"response": response_text,
"success": True,
"event_data": appointment_data
}
except Exception as e:
return {
"type": "calendar",
"response": f"I encountered an error while scheduling your appointment: {str(e)}",
"success": False
}
def extract_appointment_details(self, text: str) -> Dict[str, str]:
"""Extract appointment details from text (simplified)"""
# This is a basic implementation - in production, use NLP/LLM
details = {
"title": "Meeting",
"time": "Next available slot",
"duration": "30 minutes"
}
# Simple keyword extraction
if "doctor" in text.lower():
details["title"] = "Doctor Appointment"
elif "meeting" in text.lower():
details["title"] = "Meeting"
elif "call" in text.lower():
details["title"] = "Phone Call"
# Extract time mentions (basic)
words = text.lower().split()
for i, word in enumerate(words):
if word in ["tomorrow", "today", "monday", "tuesday", "wednesday", "thursday", "friday"]:
details["time"] = word.capitalize()
break
elif "at" in words and i < len(words) - 1:
if any(char.isdigit() for char in words[i + 1]):
details["time"] = f"at {words[i + 1]}"
break
return details
async def handle_general_question(self, text: str) -> Dict[str, Any]:
"""Handle general questions"""
# Simple responses - in production, integrate with LLM
responses = {
"hello": "Hello! I'm your voice assistant. I can help you schedule appointments or answer questions.",
"how are you": "I'm doing well, thank you! How can I help you today?",
"weather": "I'm a demo assistant focused on calendar management. For weather, I'd need to integrate with a weather API.",
"time": f"The current time is {datetime.now().strftime('%I:%M %p')}",
"default": "I understand you're asking about something. As a demo assistant, I can help you schedule appointments or provide basic information. What would you like to do?"
}
text_lower = text.lower()
response_text = responses.get("default")
for key, response in responses.items():
if key in text_lower:
response_text = response
break
return {
"type": "general",
"response": response_text,
"success": True
}
# Initialize the agent
agent = VoiceAgent()
async def process_voice_input(audio_file):
"""Process voice input and return voice response"""
if audio_file is None:
return None, "Please record some audio first."
try:
# Convert speech to text
text = await agent.speech_to_text(audio_file)
if text.startswith("Error"):
return None, text
# Process with MCP
result = await agent.process_with_mcp(text)
response_text = result["response"]
# Convert response to speech
if ELEVENLABS_API_KEY:
try:
audio_bytes = await agent.text_to_speech(response_text)
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_file.write(audio_bytes)
return tmp_file.name, f"You said: '{text}'\n\nResponse: {response_text}"
except Exception as e:
return None, f"Text-to-speech error: {str(e)}\n\nYou said: '{text}'\nResponse: {response_text}"
else:
return None, f"You said: '{text}'\n\nResponse: {response_text}\n\n(Note: Set ELEVENLABS_API_KEY for voice output)"
except Exception as e:
return None, f"Error processing audio: {str(e)}"
def process_text_input(text_input):
"""Process text input directly"""
if not text_input.strip():
return "Please enter some text."
try:
# Process with MCP
result = asyncio.run(agent.process_with_mcp(text_input))
return result["response"]
except Exception as e:
return f"Error processing text: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Voice Agent - Gradio MCP Hackathon", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π€ Voice Agent with MCP
**Hackathon Project**: Gradio Agents & MCP Hackathon
This lightweight voice agent can:
- π£οΈ Process voice input and respond with voice
- π
Schedule calendar appointments
- β Answer general questions
- π§ Uses MCP (Model Context Protocol) for processing
## Setup Instructions:
1. Set `ELEVENLABS_API_KEY` environment variable for voice synthesis
2. Set `GOOGLE_CALENDAR_CREDENTIALS` for calendar integration (optional)
3. Try voice input or type your questions below!
""")
with gr.Tab("π€ Voice Mode"):
gr.Markdown("**Record your voice using the microphone button below**")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
sources=["microphone"],
type="filepath",
label="ποΈ Click to record your voice",
format="wav"
)
voice_button = gr.Button("π Process Voice Input", variant="primary", size="lg")
with gr.Column():
audio_output = gr.Audio(label="π AI Voice Response")
text_output = gr.Textbox(
label="π Conversation Log",
lines=8,
interactive=False,
placeholder="Your conversation will appear here..."
)
voice_button.click(
fn=process_voice_input,
inputs=[audio_input],
outputs=[audio_output, text_output]
)
with gr.Tab("π¬ Text Mode"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Type your message",
placeholder="Ask me anything or request to schedule an appointment...",
lines=3
)
text_button = gr.Button("Send Message", variant="primary")
with gr.Column():
text_response = gr.Textbox(
label="AI Response",
lines=6,
interactive=False
)
text_button.click(
fn=process_text_input,
inputs=[text_input],
outputs=[text_response]
)
# Quick action buttons
gr.Markdown("### Quick Actions:")
with gr.Row():
quick_hello = gr.Button("π Say Hello")
quick_time = gr.Button("π What time is it?")
quick_appointment = gr.Button("π
Schedule appointment tomorrow at 2pm")
quick_hello.click(
fn=lambda: process_text_input("hello"),
outputs=[text_response]
)
quick_time.click(
fn=lambda: process_text_input("what time is it"),
outputs=[text_response]
)
quick_appointment.click(
fn=lambda: process_text_input("schedule an appointment tomorrow at 2pm"),
outputs=[text_response]
)
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About This Project
This is a hackathon submission for the **Gradio Agents & MCP Hackathon**.
### Features:
- **Voice Input/Output**: Uses speech recognition and ElevenLabs TTS
- **MCP Integration**: Implements Model Context Protocol for intelligent processing
- **Calendar Management**: Can schedule appointments (demo mode)
- **Lightweight**: Optimized for Hugging Face Spaces
### Technologies Used:
- **Gradio**: For the web interface
- **ElevenLabs**: For text-to-speech synthesis
- **MCP**: For intelligent request processing
- **Speech Recognition**: For voice-to-text conversion
### Environment Variables:
- `ELEVENLABS_API_KEY`: Your ElevenLabs API key
- `GOOGLE_CALENDAR_CREDENTIALS`: Google Calendar API credentials (optional)
### Example Interactions:
- "Hello, how are you?"
- "What time is it?"
- "Schedule a doctor appointment for tomorrow at 3pm"
- "Book a meeting with John next Monday"
""")
if __name__ == "__main__":
demo.launch() |