devme's picture
Upload 90 files
9314c03 verified
from __future__ import annotations
import asyncio
import json
import time
import uuid
from typing import Any, Dict, List, Optional
from fastapi import APIRouter, HTTPException
from fastapi.responses import StreamingResponse
from .logging import logger
from .models import ChatCompletionsRequest, ChatMessage
from .reorder import reorder_messages_for_anthropic
from .helpers import normalize_content_to_list, segments_to_text
from .packets import packet_template, map_history_to_warp_messages, attach_user_and_tools_to_inputs
from .state import STATE
from .bridge import initialize_once, bridge_send_stream
from .sse_transform import stream_openai_sse
# 导入warp2protobuf模块,替代HTTP调用
from warp2protobuf.config.models import get_all_unique_models
from warp2protobuf.core.auth import refresh_jwt_if_needed
router = APIRouter()
@router.get("/")
def root():
return {"service": "OpenAI Chat Completions (Warp bridge) - Streaming", "status": "ok"}
@router.get("/healthz")
def health_check():
return {"status": "ok", "service": "OpenAI Chat Completions (Warp bridge) - Streaming"}
@router.get("/v1/models")
def list_models():
"""OpenAI-compatible model listing. Direct call to get_all_unique_models."""
try:
models = get_all_unique_models()
return {"object": "list", "data": models}
except Exception as e:
logger.error(f"❌ 获取模型列表失败: {e}")
raise HTTPException(500, f"获取模型列表失败: {str(e)}")
@router.post("/v1/chat/completions")
async def chat_completions(req: ChatCompletionsRequest):
try:
await initialize_once()
except Exception as e:
logger.warning(f"[OpenAI Compat] initialize_once failed or skipped: {e}")
if not req.messages:
raise HTTPException(400, "messages 不能为空")
# 1) 打印接收到的 Chat Completions 原始请求体
try:
logger.info("[OpenAI Compat] 接收到的 Chat Completions 请求体(原始): %s", json.dumps(req.dict(), ensure_ascii=False))
except Exception:
logger.info("[OpenAI Compat] 接收到的 Chat Completions 请求体(原始) 序列化失败")
# 整理消息
history: List[ChatMessage] = reorder_messages_for_anthropic(list(req.messages))
# 2) 打印整理后的请求体(post-reorder)
try:
logger.info("[OpenAI Compat] 整理后的请求体(post-reorder): %s", json.dumps({
**req.dict(),
"messages": [m.dict() for m in history]
}, ensure_ascii=False))
except Exception:
logger.info("[OpenAI Compat] 整理后的请求体(post-reorder) 序列化失败")
system_prompt_text: Optional[str] = None
try:
chunks: List[str] = []
for _m in history:
if _m.role == "system":
_txt = segments_to_text(normalize_content_to_list(_m.content))
if _txt.strip():
chunks.append(_txt)
if chunks:
system_prompt_text = "\n\n".join(chunks)
except Exception:
system_prompt_text = None
task_id = STATE.baseline_task_id or str(uuid.uuid4())
packet = packet_template()
packet["task_context"] = {
"tasks": [{
"id": task_id,
"description": "",
"status": {"in_progress": {}},
"messages": map_history_to_warp_messages(history, task_id, None, False),
}],
"active_task_id": task_id,
}
packet.setdefault("settings", {}).setdefault("model_config", {})
packet["settings"]["model_config"]["base"] = req.model or packet["settings"]["model_config"].get("base") or "claude-4.1-opus"
if STATE.conversation_id:
packet.setdefault("metadata", {})["conversation_id"] = STATE.conversation_id
attach_user_and_tools_to_inputs(packet, history, system_prompt_text)
if req.tools:
mcp_tools: List[Dict[str, Any]] = []
for t in req.tools:
if t.type != "function" or not t.function:
continue
mcp_tools.append({
"name": t.function.name,
"description": t.function.description or "",
"input_schema": t.function.parameters or {},
})
if mcp_tools:
packet.setdefault("mcp_context", {}).setdefault("tools", []).extend(mcp_tools)
# 3) 打印转换成 protobuf JSON 的请求体(发送到 bridge 的数据包)
try:
logger.info("[OpenAI Compat] 转换成 Protobuf JSON 的请求体: %s", json.dumps(packet, ensure_ascii=False))
except Exception:
logger.info("[OpenAI Compat] 转换成 Protobuf JSON 的请求体 序列化失败")
created_ts = int(time.time())
completion_id = str(uuid.uuid4())
model_id = req.model or "warp-default"
if req.stream:
async def _agen():
async for chunk in stream_openai_sse(packet, completion_id, created_ts, model_id):
yield chunk
return StreamingResponse(_agen(), media_type="text/event-stream", headers={"Cache-Control": "no-cache", "Connection": "keep-alive"})
try:
bridge_resp = await bridge_send_stream(packet)
except Exception as e:
# 如果是429错误(配额用尽),尝试刷新JWT
if "429" in str(e):
try:
await refresh_jwt_if_needed()
logger.warning("[OpenAI Compat] Tried JWT refresh after 429 error")
bridge_resp = await bridge_send_stream(packet)
except Exception as _e:
logger.warning("[OpenAI Compat] JWT refresh attempt failed after 429: %s", _e)
raise HTTPException(429, f"bridge_error: {e}")
else:
raise HTTPException(502, f"bridge_error: {e}")
try:
STATE.conversation_id = bridge_resp.get("conversation_id") or STATE.conversation_id
ret_task_id = bridge_resp.get("task_id")
if isinstance(ret_task_id, str) and ret_task_id:
STATE.baseline_task_id = ret_task_id
except Exception:
pass
tool_calls: List[Dict[str, Any]] = []
try:
parsed_events = bridge_resp.get("parsed_events", []) or []
for ev in parsed_events:
evd = ev.get("parsed_data") or ev.get("raw_data") or {}
client_actions = evd.get("client_actions") or evd.get("clientActions") or {}
actions = client_actions.get("actions") or client_actions.get("Actions") or []
for action in actions:
add_msgs = action.get("add_messages_to_task") or action.get("addMessagesToTask") or {}
if not isinstance(add_msgs, dict):
continue
for message in add_msgs.get("messages", []) or []:
tc = message.get("tool_call") or message.get("toolCall") or {}
call_mcp = tc.get("call_mcp_tool") or tc.get("callMcpTool") or {}
if isinstance(call_mcp, dict) and call_mcp.get("name"):
try:
args_obj = call_mcp.get("args", {}) or {}
args_str = json.dumps(args_obj, ensure_ascii=False)
except Exception:
args_str = "{}"
tool_calls.append({
"id": tc.get("tool_call_id") or str(uuid.uuid4()),
"type": "function",
"function": {"name": call_mcp.get("name"), "arguments": args_str},
})
except Exception:
pass
if tool_calls:
msg_payload = {"role": "assistant", "content": "", "tool_calls": tool_calls}
finish_reason = "tool_calls"
else:
response_text = bridge_resp.get("response", "")
msg_payload = {"role": "assistant", "content": response_text}
finish_reason = "stop"
final = {
"id": completion_id,
"object": "chat.completion",
"created": created_ts,
"model": model_id,
"choices": [{"index": 0, "message": msg_payload, "finish_reason": finish_reason}],
}
return final