File size: 22,504 Bytes
1222cee
4f9cc21
1222cee
 
 
 
 
 
 
 
 
 
 
 
 
 
e51d6cb
622fbb2
1222cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622fbb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222cee
 
 
 
 
61c3332
1222cee
 
 
 
 
 
4f9cc21
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
 
61c3332
622fbb2
e51d6cb
 
622fbb2
e51d6cb
 
 
 
 
61c3332
622fbb2
1222cee
 
 
 
61c3332
1222cee
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
61c3332
1222cee
 
4f9cc21
e51d6cb
61c3332
1222cee
 
 
 
61c3332
1222cee
 
 
 
4f9cc21
e51d6cb
1222cee
 
61c3332
1222cee
 
 
 
 
61c3332
1222cee
 
 
 
4f9cc21
e51d6cb
 
1222cee
61c3332
1222cee
61c3332
1222cee
 
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
61c3332
1222cee
 
e51d6cb
1222cee
61c3332
1222cee
 
 
4de1813
1222cee
4de1813
 
 
 
 
622fbb2
 
4de1813
 
 
1222cee
 
 
 
 
 
 
 
4f9cc21
622fbb2
1222cee
4f9cc21
1222cee
 
 
61c3332
1222cee
 
 
61c3332
1222cee
 
61c3332
1222cee
 
 
61c3332
1222cee
 
 
 
 
 
 
61c3332
1222cee
 
61c3332
1222cee
 
 
 
61c3332
1222cee
 
 
 
 
 
4f9cc21
1222cee
 
4f9cc21
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c3332
1222cee
fdb349c
1222cee
 
 
4f9cc21
61c3332
1222cee
 
 
 
 
61c3332
1222cee
 
 
61c3332
 
 
1222cee
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f9cc21
447d8a2
4f9cc21
1222cee
61c3332
1222cee
4f9cc21
622fbb2
4f9cc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c3332
1222cee
 
61c3332
1222cee
6268608
 
61c3332
1222cee
 
6268608
 
1222cee
 
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
61c3332
1222cee
 
61c3332
 
1222cee
 
 
 
 
61c3332
1222cee
 
61c3332
1222cee
 
622fbb2
4f9cc21
 
 
 
 
 
622fbb2
 
4f9cc21
622fbb2
 
 
 
 
 
 
 
4f9cc21
 
 
61c3332
1222cee
 
 
 
 
 
 
61c3332
622fbb2
4f9cc21
 
1222cee
 
 
61c3332
1222cee
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
61c3332
1222cee
61c3332
1222cee
 
61c3332
1222cee
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
 
 
61c3332
1222cee
 
 
61c3332
1222cee
 
 
 
61c3332
1222cee
 
61c3332
1222cee
 
61c3332
1222cee
 
61c3332
1222cee
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
61c3332
1222cee
 
61c3332
1222cee
 
 
 
 
 
 
 
61c3332
e51d6cb
1222cee
 
61c3332
1222cee
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
61c3332
1222cee
 
 
 
 
 
 
 
 
 
 
 
622fbb2
1222cee
 
e51d6cb
 
 
 
 
 
 
1222cee
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import json
import re
import time
import asyncio
import uvicorn
from fastapi import FastAPI, Request, HTTPException, Header, Depends
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, Union
import requests
from datetime import datetime
import logging
import os
from dotenv import load_dotenv

from apscheduler.schedulers.background import BackgroundScheduler

# 加载环境变量
load_dotenv()

# 配置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("openai-proxy")

# 创建FastAPI应用
app = FastAPI(
    title="OpenAI API Proxy",
    description="将OpenAI API请求代理到DeepSider API",
    version="1.0.0"
)

# 添加CORS中间件
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# 配置
DEEPSIDER_API_BASE = "https://api.chargpt.ai/api/v2"
DEEPSIDER_TOKEN = os.getenv("DEEPSIDER_TOKEN", "").split(',')
TOKEN_INDEX = 0

# 模型映射表
MODEL_MAPPING = {
    "gpt-4o-mini": "openai/gpt-4o-mini",
    "gpt-4o": "openai/gpt-4o",
    "o1": "openai/o1",
    "o3-mini": "openai/o3-mini",
    "claude-3.5-sonnet": "anthropic/claude-3.5-sonnet",
    "claude-3.7-sonnet": "anthropic/claude-3.7-sonnet",
    "grok-3": "x-ai/grok-3",
    "grok-3-reasoner": "x-ai/grok-3-reasoner",
    "deepseek-v3": "deepseek/deepseek-chat",
    "deepseek-r1": "deepseek/deepseek-r1",
    "gemini-2.0-flash": "google/gemini-2.0-flash",
    "gemini-2.0-pro-exp": "google/gemini-2.0-pro-exp-02-05",
    "gemini-2.0-flash-thinking-exp": "google/gemini-2.0-flash-thinking-exp-1219",
    "qwq-32b": "qwen/qwq-32b",
    "qwen-max": "qwen/qwen-max",
    "DeepSeek-V3-0324": "deepseek/deepseek-chat-v3-0324",
    "gpt-4o-image": "openai/gpt-4o-image"
}

# Token负载均衡状态
token_status = {}


# 请求头
def get_headers():
    global TOKEN_INDEX
    # 负载均衡,轮询选择token
    if len(DEEPSIDER_TOKEN) > 0:
        current_token = DEEPSIDER_TOKEN[TOKEN_INDEX % len(DEEPSIDER_TOKEN)]
        # TOKEN_INDEX = (TOKEN_INDEX + 1) % len(DEEPSIDER_TOKEN)

        # 检查token状态
        if current_token in token_status and not token_status[current_token]["active"]:
            # 如果token不可用,尝试下一个
            for i in range(len(DEEPSIDER_TOKEN)):
                next_token = DEEPSIDER_TOKEN[(TOKEN_INDEX + i) % len(DEEPSIDER_TOKEN)]
                if next_token not in token_status or token_status[next_token]["active"]:
                    current_token = next_token
                    TOKEN_INDEX = (TOKEN_INDEX + i + 1) % len(DEEPSIDER_TOKEN)
                    break
    else:
        current_token = ""

    return {
        "accept": "*/*",
        "accept-encoding": "gzip, deflate, br, zstd",
        "accept-language": "en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7",
        "content-type": "application/json",
        "origin": "chrome-extension://client",
        "i-lang": "zh-CN",
        "i-version": "1.1.64",
        "sec-ch-ua": '"Chromium";v="134", "Not:A-Brand";v="24"',
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": "Windows",
        "sec-fetch-dest": "empty",
        "sec-fetch-mode": "cors",
        "sec-fetch-site": "cross-site",
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36",
        "authorization": f"Bearer {current_token}"
    }


# OpenAI API请求模型
class ChatMessage(BaseModel):
    role: str
    content: str
    name: Optional[str] = None


class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    stream: Optional[bool] = False
    stop: Optional[Union[List[str], str]] = None
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0
    frequency_penalty: Optional[float] = 0
    user: Optional[str] = None


def reset_task():
    try:
        for key, value in token_status.items():
            token_status[key]["total"] = value["count"]
            token_status[key]["active"] = True
        print(f"执行重置任务... 当前时间: {datetime.now()}")
    except Exception as e:
        print(f"任务执行出错: {e}")


# 初始化token状态
async def initialize_token_status():
    """初始化检查所有token的状态和余额"""
    global token_status

    for token in DEEPSIDER_TOKEN:
        headers = {
            "accept": "*/*",
            "content-type": "application/json",
            "authorization": f"Bearer {token}"
        }

        try:
            # 获取账户余额信息
            response = requests.get(
                f"{DEEPSIDER_API_BASE.replace('/v2', '')}/quota/retrieve",
                headers=headers
            )

            active = False
            quota_info = {}
            count = 0
            total = 0

            if response.status_code == 200:
                data = response.json()
                if data.get('code') == 0:
                    quota_list = data.get('data', {}).get('list', [])

                    # 解析余额信息
                    for item in quota_list:
                        item_type = item.get('type', '')
                        available = item.get('available', 0)
                        count += available
                        total += item.get('total', 0)
                        if available > 0:
                            active = True

                        quota_info[item_type] = {
                            "total": item.get('total', 0),
                            "available": available,
                            "title": item.get('title', '')
                        }

            token_status[token] = {
                "active": active,
                "quota": quota_info,
                "last_checked": datetime.now(),
                "failed_count": 0,
                "count": count,
                'total': total
            }

            logger.info(f"Token {token[:8]}... 状态:{'活跃' if active else '无效'}")

        except Exception as e:
            logger.warning(f"检查Token {token[:8]}... 出错:{str(e)}")
            token_status[token] = {
                "active": False,
                "quota": {},
                "last_checked": datetime.now(),
                "failed_count": 0
            }


# 工具函数
def verify_api_key(api_key: str = Header(..., alias="Authorization")):
    """验证API密钥"""
    if not api_key.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Invalid API key format")
    return api_key.replace("Bearer ", "")


def map_openai_to_deepsider_model(model: str) -> str:
    """将OpenAI模型名称映射到DeepSider模型名称"""
    return MODEL_MAPPING.get(model, model)


def format_messages_for_deepsider(messages: List[ChatMessage]) -> str:
    """格式化消息列表为DeepSider API所需的提示格式"""
    prompt = ""
    next_code = False
    for msg in messages:

        if next_code:
            next_code = False
            continue

        if msg.role == 'assistant' and (
                '验证码提示' in msg.content or '验证码已发送至您的邮箱' in msg.content) and 'clId' in msg.content:
            next_code = True
            continue

        role = msg.role
        # 将OpenAI的角色映射到DeepSider能理解的格式
        if role == "system":
            # 系统消息放在开头 作为指导
            prompt = f"{msg.content}\n\n" + prompt
        elif role == "user":
            prompt += f"Human: {msg.content}\n\n"
        elif role == "assistant":
            content = msg.content
            re.sub(r'\[clId:(.*)]', '', content)
            prompt += f"Assistant: {msg.content}\n\n"

        else:
            # 其他角色按用户处理
            prompt += f"Human ({role}): {msg.content}\n\n"

    # 如果最后一个消息不是用户的 添加一个Human前缀引导模型回答
    if messages and messages[-1].role != "user":
        prompt += "Human: "

    return prompt.strip()


def update_token_status(token: str, success: bool, error_message: str = None):
    """更新token的状态"""
    global token_status

    if token not in token_status:
        token_status[token] = {
            "active": True,
            "quota": {},
            "last_checked": datetime.now(),
            "failed_count": 0
        }

    if not success:
        token_status[token]["failed_count"] += 1

        # 如果失败消息包含余额不足,标记为不活跃
        if error_message and ("配额不足" in error_message or "quota" in error_message.lower()):
            token_status[token]["active"] = False
            logger.warning(f"Token {token[:8]}... 余额不足,已标记为不活跃")

        # 连续失败5次,也标记为不活跃
        if token_status[token]["failed_count"] >= 5:
            token_status[token]["active"] = False
            logger.warning(f"Token {token[:8]}... 连续失败{token_status[token]['failed_count']}次,已标记为不活跃")
    else:
        # 成功则重置失败计数
        token_status[token]["count"] -= 1
        token_status[token]["failed_count"] = 0

    if token_status[token]["count"] <= 0:
        token_status[token]["active"] = False
        logger.warning(f"Token {token[:8]}... 余额不足,已标记为不活跃")


async def generate_openai_response(full_response: str, request_id: str, model: str) -> Dict:
    """生成符合OpenAI API响应格式的完整响应"""
    timestamp = int(time.time())
    return {
        "id": f"chatcmpl-{request_id}",
        "object": "chat.completion",
        "created": timestamp,
        "model": model,
        "choices": [
            {
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": full_response
                },
                "finish_reason": "stop"
            }
        ],
        "usage": {
            "prompt_tokens": 0,  # 无法准确计算
            "completion_tokens": 0,  # 无法准确计算
            "total_tokens": 0  # 无法准确计算
        }
    }


async def stream_openai_response(response, request_id: str, model: str, token: str):
    global TOKEN_INDEX
    """流式返回OpenAI API格式的响应"""
    timestamp = int(time.time())
    full_response = ""
    codeFlag = False

    try:
        # 将DeepSider响应流转换为OpenAI流格式
        for line in response.iter_lines():
            if not line:
                continue

            if line.startswith(b'data: '):
                try:
                    data = json.loads(line[6:].decode('utf-8'))
                    if data.get('code') == 1005:
                        raise Exception(data.get("message"))

                    if data.get('code') == 202 and data.get('data', {}).get('type') == "chat":
                        # 获取正文内容
                        content = data.get('data', {}).get('content', '')
                        if content:
                            full_response += content

                            # 生成OpenAI格式的流式响应
                            chunk = {
                                "id": f"chatcmpl-{request_id}",
                                "object": "chat.completion.chunk",
                                "created": timestamp,
                                "model": model,
                                "choices": [
                                    {
                                        "index": 0,
                                        "delta": {
                                            "content": content
                                        },
                                        "finish_reason": None
                                    }
                                ]
                            }

                            if '验证码提示' in content or '验证码已发送至您的邮箱' in content:
                                codeFlag = True
                            yield f"data: {json.dumps(chunk)}\n\n"

                    elif data.get('code') == 203:
                        # 尾巴
                        if codeFlag or model == 'gpt-4o-image':
                            chunk = {
                                "id": f"chatcmpl-{request_id}",
                                "object": "chat.completion.chunk",
                                "created": timestamp,
                                "model": model,
                                "choices": [
                                    {
                                        "index": 0,
                                        "delta": {
                                            "content": f"\n[clId:{data.get('data', {}).get('clId')}]"
                                        },
                                        "finish_reason": None
                                    }
                                ]
                            }
                            yield f"data: {json.dumps(chunk)}\n\n"

                        # 生成完成信号
                        chunk = {
                            "id": f"chatcmpl-{request_id}",
                            "object": "chat.completion.chunk",
                            "created": timestamp,
                            "model": model,
                            "choices": [
                                {
                                    "index": 0,
                                    "delta": {},
                                    "finish_reason": "stop"
                                }
                            ]
                        }
                        yield f"data: {json.dumps(chunk)}\n\n"
                        yield "data: [DONE]\n\n"

                except json.JSONDecodeError:
                    logger.warning(f"无法解析响应: {line}")

        # 更新token状态(成功)
        if not codeFlag:
            update_token_status(token, True)

    except Exception as e:
        logger.error(f"流式响应处理出错: {str(e)}")
        if '今日额度已用完啦' in str(e):
            TOKEN_INDEX = (TOKEN_INDEX + 1) % len(DEEPSIDER_TOKEN)
        # 更新token状态(失败)
        update_token_status(token, False, str(e))

        # 返回错误信息
        error_chunk = {
            "id": f"chatcmpl-{request_id}",
            "object": "chat.completion.chunk",
            "created": timestamp,
            "model": model,
            "choices": [
                {
                    "index": 0,
                    "delta": {
                        "content": f"\n\n[处理响应时出错: {str(e)}]"
                    },
                    "finish_reason": "stop"
                }
            ]
        }
        yield f"data: {json.dumps(error_chunk)}\n\n"
        yield "data: [DONE]\n\n"


# 路由定义
@app.get("/")
async def root():
    return {"message": "OpenAI API Proxy服务已启动 连接至DeepSider API"}


@app.get("/v1/models")
async def list_models(api_key: str = Depends(verify_api_key)):
    """列出可用的模型"""
    models = []
    for openai_model, _ in MODEL_MAPPING.items():
        models.append({
            "id": openai_model,
            "object": "model",
            "created": int(time.time()),
            "owned_by": "openai-proxy"
        })

    return {
        "object": "list",
        "data": models
    }


@app.post("/v1/chat/completions")
async def create_chat_completion(
        request: Request,
        api_key: str = Depends(verify_api_key)
):
    """创建聊天完成API - 支持普通请求和流式请求"""
    # 解析请求体
    body = await request.json()
    chat_request = ChatCompletionRequest(**body)

    # 生成唯一请求ID
    request_id = datetime.now().strftime("%Y%m%d%H%M%S") + str(time.time_ns())[-6:]

    # 映射模型
    deepsider_model = map_openai_to_deepsider_model(chat_request.model)
    model = chat_request.model
    # 验证验证码
    isCode = False
    clId = None

    if len(chat_request.messages) > 1:
        msg = chat_request.messages[-2]
        if msg.role == 'assistant' and (
                '验证码提示' in msg.content or '验证码已发送至您的邮箱' in msg.content) and 'clId' in msg.content:
            isCode = True
        
        pattern = r'\[clId:(.*)]'
        match = re.search(pattern, msg.content)
        if match:
            clId = match.group(1)

        # 准备DeepSider API所需的提示
    if isCode or model == 'gpt-4o-image':
        prompt = chat_request.messages[-1].content
    else:
        prompt = format_messages_for_deepsider(chat_request.messages)

    # 准备请求体
    payload = {
        "model": deepsider_model,
        "prompt": prompt,
        "webAccess": "close",  # 默认关闭网络访问
        "timezone": "Asia/Shanghai"
    }

    if isCode or model == 'gpt-4o-image':
        payload["clId"] = clId

    # 获取当前token
    headers = get_headers()
    current_token = headers["authorization"].replace("Bearer ", "")

    try:
        # 发送请求到DeepSider API
        response = requests.post(
            f"{DEEPSIDER_API_BASE}/chat/conversation",
            headers=headers,
            json=payload,
            stream=True
        )

        # 检查响应状态
        if response.status_code != 200:
            error_msg = f"DeepSider API请求失败: {response.status_code}"
            try:
                error_data = response.json()
                error_msg += f" - {error_data.get('message', '')}"
            except:
                error_msg += f" - {response.text}"

            logger.error(error_msg)

            # 更新token状态
            update_token_status(current_token, False, error_msg)

            raise HTTPException(status_code=response.status_code, detail="API请求失败")

        # 处理流式或非流式响应
        if chat_request.stream:
            # 返回流式响应
            return StreamingResponse(
                stream_openai_response(response, request_id, chat_request.model, current_token),
                media_type="text/event-stream"
            )
        else:
            # 收集完整响应
            full_response = ""
            for line in response.iter_lines():
                if not line:
                    continue

                if line.startswith(b'data: '):
                    try:
                        data = json.loads(line[6:].decode('utf-8'))

                        if data.get('code') == 202 and data.get('data', {}).get('type') == "chat":
                            content = data.get('data', {}).get('content', '')
                            if content:
                                full_response += content

                    except json.JSONDecodeError:
                        pass

            # 更新token状态(成功)
            update_token_status(current_token, True)

            # 返回OpenAI格式的完整响应
            return await generate_openai_response(full_response, request_id, chat_request.model)

    except HTTPException:
        raise
    except Exception as e:
        logger.exception("处理请求时出错")
        # 更新token状态(失败)
        update_token_status(current_token, False, str(e))
        raise HTTPException(status_code=500, detail=f"内部服务器错误: {str(e)}")


# 查看token状态的端点
@app.get("/admin/tokens")
async def get_token_status(admin_key: str = Header(None, alias="X-Admin-Key")):
    """查看所有token的状态"""
    # 简单的管理密钥检查
    expected_admin_key = os.getenv("ADMIN_KEY", "admin")
    if not admin_key or admin_key != expected_admin_key:
        raise HTTPException(status_code=403, detail="Unauthorized")

    # 脱敏token,只显示前8位
    safe_status = {}
    for token, status in token_status.items():
        token_display = token[:8] + "..." if len(token) > 8 else token
        safe_status[token_display] = status

    return {"tokens": safe_status, "active_tokens": sum(1 for s in token_status.values() if s["active"])}


# 手动刷新token状态
@app.post("/admin/refresh-tokens")
async def refresh_token_status(admin_key: str = Header(None, alias="X-Admin-Key")):
    """手动刷新所有token的状态"""
    # 简单的管理密钥检查
    expected_admin_key = os.getenv("ADMIN_KEY", "admin")
    if not admin_key or admin_key != expected_admin_key:
        raise HTTPException(status_code=403, detail="Unauthorized")

    await ()
    return {"message": "所有token状态已刷新", "active_tokens": sum(1 for s in token_status.values() if s["active"])}


# 模拟模型的路由
@app.get("/v1/engines")
@app.get("/v1/engines/{engine_id}")
async def engines_handler():
    """兼容旧的引擎API"""
    raise HTTPException(status_code=404, detail="引擎API已被弃用 请使用模型API")


# 错误处理器
@app.exception_handler(404)
async def not_found_handler(request, exc):
    return {
        "error": {
            "message": f"未找到资源: {request.url.path}",
            "type": "not_found_error",
            "code": "not_found"
        }
    }, 404


# 启动事件
@app.on_event("startup")
async def startup_event():
    """服务启动时初始化token状态"""
    if not DEEPSIDER_TOKEN or (len(DEEPSIDER_TOKEN) == 1 and DEEPSIDER_TOKEN[0] == ""):
        logger.warning("未设置DEEPSIDER_TOKEN环境变量 请设置后再重启服务")
    else:
        logger.info(f"初始化 {len(DEEPSIDER_TOKEN)} 个token状态...")
        await initialize_token_status()
        active_tokens = sum(1 for s in token_status.values() if s["active"])
        logger.info(f"初始化完成 活跃token: {active_tokens}/{len(DEEPSIDER_TOKEN)}")


# 主程序
if __name__ == "__main__":
    scheduler = BackgroundScheduler()

    # 添加任务,每天0点执行
    scheduler.add_job(reset_task, 'cron', hour=0, minute=0)
    # 启动调度器
    scheduler.start()

    # 启动服务器
    port = int(os.getenv("PORT", "3000"))
    logger.info(f"启动OpenAI API代理服务 端口: {port}")
    uvicorn.run(app, host="0.0.0.0", port=port)