CUSUM¶
Cumulative Sum (CUSUM)
@author: smriti.prathapan
- class package.cusum.CUSUM¶
CUSUM class and its functionalities.
- change_detection(normalized_ref_value: float = 0.5, normalized_threshold: float = 4) None ¶
Detects a change in the process.
- Parameters:
pre_change_days (int) – Number of days for in-control phase.
normalized_ref_value (float, optional) – Normalized reference value for detecting a unit standard deviation change in mean of the process. Defaults to 0.5.
normalized_threshold (float, optional) – Normalized threshold. Defaults to 4.
- compute_cusum(x: list[float], mu_0: float, k: float) tuple[list[float], list[float], list[float]] ¶
Compute CUSUM for the observations in x
- Parameters:
x (list[float]) – Performance metric to be monitored
mu_0 (float) – In-control mean of the observations/performance metric
k (float) – Reference value related to the magnitude of change that one is interested in detecting
- Returns:
Positive cumulative sum, negative cumulative sum, and CUSUM
- Return type:
tuple[list[float], list[float], list[float]]
- initialize() None ¶
Initialize with the configuration file.
- plot_cusum_plotly() Figure ¶
Plot CUSUM value using Plotly
- Returns:
CUSUM plot using Plotly graph object.
- Return type:
go.Figure
- plot_input_metric_plotly() Figure ¶
Plot the input metric using Plotly.
- Returns:
Scatter plot as Plotly graph object.
- Return type:
go.Figure
- plot_input_metric_plotly_raw() Figure ¶
Plot AI output using Plotly.
- Returns:
Scatter plot as Plotly graph object.
- Return type:
go.Figure
- set_df_metric_csv(data_csv: DataFrame) None ¶
Assign the performance metric data to be used for CUSUM.
- Parameters:
data_csv (DataFrame or TextFileReader) – A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes.
- set_df_metric_default() None ¶
Read the provided performance metric data to be used for CUSUM for an example.
- set_init_stats(init_days: int) None ¶
Use initial days to calculate in-control mean and standard deviation.
- Parameters:
init_days (int, optional) – Initial days when observations are considered stable. Defaults to 30.
- set_timeline(data: ndarray) None ¶
Set the timeline of observations.
- Parameters:
data (np.ndarray) – Data of the metric values across the observations.