File size: 13,295 Bytes
18ce093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d702cb
0296fb6
8d702cb
18ce093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5497f8f
 
0296fb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from __future__ import annotations

import logging
import argparse
import json
import safetensors.torch
import os
import sys
from pathlib import Path
from typing import Any, ContextManager, cast
from torch import Tensor

import numpy as np
import torch
import gguf

# TODO: add more:
SUPPORTED_ARCHS = ["flux", "sd3", "ltxv", "hyvid", "wan", "hidream", "qwen"]

logger = logging.getLogger(__name__)


class QuantConfig:
    ftype: gguf.LlamaFileType
    qtype: gguf.GGMLQuantizationType

    def __init__(self, ftype: gguf.LlamaFileType, qtype: gguf.GGMLQuantizationType):
        self.ftype = ftype
        self.qtype = qtype


qconfig_map: dict[str, QuantConfig] = {
    "F16": QuantConfig(gguf.LlamaFileType.MOSTLY_F16, gguf.GGMLQuantizationType.F16),
    "BF16": QuantConfig(gguf.LlamaFileType.MOSTLY_BF16, gguf.GGMLQuantizationType.BF16),
    "Q8_0": QuantConfig(gguf.LlamaFileType.MOSTLY_Q8_0, gguf.GGMLQuantizationType.Q8_0),
    "Q6_K": QuantConfig(gguf.LlamaFileType.MOSTLY_Q6_K, gguf.GGMLQuantizationType.Q6_K),
    "Q5_K_S": QuantConfig(gguf.LlamaFileType.MOSTLY_Q5_K_S, gguf.GGMLQuantizationType.Q5_K),
    "Q5_1": QuantConfig(gguf.LlamaFileType.MOSTLY_Q5_1, gguf.GGMLQuantizationType.Q5_1),
    "Q5_0": QuantConfig(gguf.LlamaFileType.MOSTLY_Q5_0, gguf.GGMLQuantizationType.Q5_0),
    "Q4_K_S": QuantConfig(gguf.LlamaFileType.MOSTLY_Q4_K_S, gguf.GGMLQuantizationType.Q4_K),
    "Q4_1": QuantConfig(gguf.LlamaFileType.MOSTLY_Q4_1, gguf.GGMLQuantizationType.Q4_1),
    "Q4_0": QuantConfig(gguf.LlamaFileType.MOSTLY_Q4_0, gguf.GGMLQuantizationType.Q4_0),
    "Q3_K_S": QuantConfig(gguf.LlamaFileType.MOSTLY_Q3_K_S, gguf.GGMLQuantizationType.Q3_K),
    # "Q2_S": QuantConfig(gguf.LlamaFileType.MOSTLY_Q2_K, gguf.GGMLQuantizationType.Q2_K), # not yet supported in python
}


# tree of lazy tensors
class LazyTorchTensor(gguf.LazyBase):
    _tensor_type = torch.Tensor
    # to keep the type-checker happy
    dtype: torch.dtype
    shape: torch.Size

    # only used when converting a torch.Tensor to a np.ndarray
    _dtype_map: dict[torch.dtype, type] = {
        torch.float16: np.float16,
        torch.float32: np.float32,
    }

    # used for safetensors slices
    # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
    # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
    _dtype_str_map: dict[str, torch.dtype] = {
        "F64": torch.float64,
        "F32": torch.float32,
        "BF16": torch.bfloat16,
        "F16": torch.float16,
        # "U64": torch.uint64,
        "I64": torch.int64,
        # "U32": torch.uint32,
        "I32": torch.int32,
        # "U16": torch.uint16,
        "I16": torch.int16,
        "U8": torch.uint8,
        "I8": torch.int8,
        "BOOL": torch.bool,
        "F8_E4M3": torch.float8_e4m3fn,
        "F8_E5M2": torch.float8_e5m2,
    }

    def numpy(self) -> gguf.LazyNumpyTensor:
        dtype = self._dtype_map[self.dtype]
        return gguf.LazyNumpyTensor(
            meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
            args=(self,),
            func=(lambda s: s.numpy()),
        )

    @classmethod
    def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
        return torch.empty(size=shape, dtype=dtype, device="meta")

    @classmethod
    def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
        dtype = cls._dtype_str_map[st_slice.get_dtype()]
        shape: tuple[int, ...] = tuple(st_slice.get_shape())
        lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
        return cast(torch.Tensor, lazy)

    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        del types  # unused

        if kwargs is None:
            kwargs = {}

        if func is torch.Tensor.numpy:
            return args[0].numpy()

        return cls._wrap_fn(func)(*args, **kwargs)


class Converter:
    path_safetensors: Path
    endianess: gguf.GGUFEndian
    outtype: QuantConfig
    outfile: Path
    gguf_writer: gguf.GGUFWriter

    def __init__(
        self,
        arch: str,
        path_safetensors: Path,
        endianess: gguf.GGUFEndian,
        outtype: QuantConfig,
        outfile: Path,
        subfolder: str = None,
        repo_id: str = None,
        is_diffusers: bool = False,
    ):
        self.path_safetensors = path_safetensors
        self.endianess = endianess
        self.outtype = outtype
        self.outfile = outfile

        self.gguf_writer = gguf.GGUFWriter(path=None, arch=arch, endianess=self.endianess)
        self.gguf_writer.add_file_type(self.outtype.ftype)
        self.gguf_writer.add_type("diffusion")  # for HF hub to detect the type correctly
        if repo_id:
            self.gguf_writer.add_string("repo_id", repo_id)
        if subfolder:
            self.gguf_writer.add_string("subfolder", subfolder)
        if is_diffusers:
            self.gguf_writer.add_bool("is_diffusers", True)

        # load tensors and process
        from safetensors import safe_open

        ctx = cast(ContextManager[Any], safe_open(path_safetensors, framework="pt", device="cpu"))
        with ctx as model_part:
            for name in model_part.keys():
                data = model_part.get_slice(name)
                data = LazyTorchTensor.from_safetensors_slice(data)
                self.process_tensor(name, data)

    def process_tensor(self, name: str, data_torch: LazyTorchTensor) -> None:
        is_1d = len(data_torch.shape) == 1
        current_dtype = data_torch.dtype
        target_dtype = gguf.GGMLQuantizationType.F32 if is_1d else self.outtype.qtype

        if data_torch.dtype not in (torch.float16, torch.float32):
            data_torch = data_torch.to(torch.float32)

        data = data_torch.numpy()

        if current_dtype != target_dtype:
            from custom_quants import quantize as custom_quantize, QuantError

            try:
                data = custom_quantize(data, target_dtype)
            except QuantError as e:
                logger.warning("%s, %s", e, "falling back to F16")
                target_dtype = gguf.GGMLQuantizationType.F16
                data = custom_quantize(data, target_dtype)

        # reverse shape to make it similar to the internal ggml dimension order
        shape = gguf.quant_shape_from_byte_shape(data.shape, target_dtype) if data.dtype == np.uint8 else data.shape
        shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
        logger.info(f"{f'%-32s' % f'{name},'} {current_dtype} --> {target_dtype.name}, shape = {shape_str}")

        # add tensor to gguf
        self.gguf_writer.add_tensor(name, data, raw_dtype=target_dtype)

    def write(self) -> None:
        self.gguf_writer.write_header_to_file(path=self.outfile)
        self.gguf_writer.write_kv_data_to_file()
        self.gguf_writer.write_tensors_to_file(progress=True)
        self.gguf_writer.close()


# https://github.com/bghira/SimpleTuner/blob/cea2457ab063f6dedb9e697830ae68a96be90641/helpers/training/save_hooks.py#L64
def _merge_sharded_checkpoints(folder: Path):
    with open(folder / "diffusion_pytorch_model.safetensors.index.json", "r") as f:
        ckpt_metadata = json.load(f)
    weight_map = ckpt_metadata.get("weight_map", None)
    if weight_map is None:
        raise KeyError("'weight_map' key not found in the shard index file.")

    # Collect all unique safetensors files from weight_map
    files_to_load = set(weight_map.values())
    merged_state_dict = {}

    # Load tensors from each unique file
    for file_name in files_to_load:
        part_file_path = folder / file_name
        if not os.path.exists(part_file_path):
            raise FileNotFoundError(f"Part file {file_name} not found.")

        with safetensors.safe_open(part_file_path, framework="pt", device="cpu") as f:
            for tensor_key in f.keys():
                if tensor_key in weight_map:
                    merged_state_dict[tensor_key] = f.get_tensor(tensor_key)

    return merged_state_dict


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser(description="Convert a flux model to GGUF")
    parser.add_argument(
        "--outfile",
        type=Path,
        default=Path("model-{ftype}.gguf"),
        help="path to write to; default: 'model-{ftype}.gguf' ; note: {ftype} will be replaced by the outtype",
    )
    parser.add_argument(
        "--outtype",
        type=str,
        choices=qconfig_map.keys(),
        default="F16",
        help="output quantization scheme",
    )
    parser.add_argument(
        "--arch",
        type=str,
        choices=SUPPORTED_ARCHS,
        help="output model architecture",
    )
    parser.add_argument(
        "--bigendian",
        action="store_true",
        help="model is executed on big endian machine",
    )
    parser.add_argument(
        "model",
        type=Path,
        help="directory containing safetensors model file",
        nargs="?",
    )
    parser.add_argument("--cache_dir", type=Path, help="Directory to store the intermediate files when needed.")
    parser.add_argument(
        "--subfolder", type=Path, default=None, help="Subfolder on the HF Hub to load checkpoints from."
    )
    parser.add_argument(
        "--verbose",
        action="store_true",
        help="increase output verbosity",
    )

    args = parser.parse_args()
    if args.model is None:
        parser.error("the following arguments are required: model")
    if args.arch is None:
        parser.error("the following arguments are required: --arch")
    if args.arch not in SUPPORTED_ARCHS:
        parser.error(f"Unsupported architecture: {args.arch}. Supported architectures: {', '.join(SUPPORTED_ARCHS)}")
    return args


def convert(args):
    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)

    if not args.model.is_dir() and not args.model.is_file():
        if not len(str(args.model).split("/")) == 2:
            logging.error(f"Model path {args.model} does not exist.")
            sys.exit(1)

    is_diffusers = False
    repo_id = None
    merged_state_dict = None
    if args.model.is_dir():
        logging.info("Supplied a directory.")
        files = list(args.model.glob("*.safetensors"))
        n = len(files)
        if n == 0:
            logging.error("No safetensors files found.")
            sys.exit(1)
        if n == 1:
            logging.info(f"Assinging {files[0]} to `args.model`")
            args.model = files[0]
        if n > 1:
            assert args.model / "diffusion_pytorch_model.safetensors.index.json" in list(args.model.glob("*.*"))
            assert args.cache_dir
            merged_state_dict = _merge_sharded_checkpoints(args.model)
            filepath = args.cache_dir / "merged_state_dict.safetensors"
            safetensors.torch.save_file(merged_state_dict, filepath)
            logging.info(f"Serialized merged state dict to {filepath}")
            args.model = Path(filepath)

    elif len(str(args.model).split("/")) == 2:
        from huggingface_hub import snapshot_download

        logging.info("Hub repo ID detected.")
        allow_patterns = f"{args.subfolder}/*.*" if args.subfolder else None
        local_dir = snapshot_download(
            repo_id=str(args.model), local_dir=args.cache_dir, allow_patterns=allow_patterns, token=args.hf_token
        )
        repo_id = str(args.model)
        local_dir = Path(local_dir)
        local_dir = local_dir / args.subfolder if args.subfolder else local_dir
        merged_state_dict = _merge_sharded_checkpoints(local_dir)
        filepath = (
            args.cache_dir / "merged_state_dict.safetensors" if args.cache_dir else "merged_state_dict.safetensors"
        )
        safetensors.torch.save_file(merged_state_dict, filepath)
        logging.info(f"Serialized merged state dict to {filepath}")
        args.model = Path(filepath)
        is_diffusers = True

    if args.model.suffix != ".safetensors":
        logging.error(f"Model path {args.model} is not a safetensors file.")
        sys.exit(1)

    if args.outfile.suffix != ".gguf":
        logging.error("Output file must have .gguf extension.")
        sys.exit(1)

    qconfig = qconfig_map[args.outtype]
    outfile = Path(str(args.outfile).format(ftype=args.outtype.upper()))

    logger.info(f"Converting model in {args.model} to {outfile} with quantization {args.outtype}")
    converter = Converter(
        arch=args.arch,
        path_safetensors=args.model,
        endianess=gguf.GGUFEndian.BIG if args.bigendian else gguf.GGUFEndian.LITTLE,
        outtype=qconfig,
        outfile=outfile,
        repo_id=repo_id,
        subfolder=str(args.subfolder) if args.subfolder else None,
        is_diffusers=is_diffusers,
    )
    converter.write()
    logger.info(
        f"Conversion complete. Output written to {outfile}, architecture: {args.arch}, quantization: {qconfig.qtype.name}"
    )
    if merged_state_dict is not None:
        os.remove(filepath)
        logging.info(f"Removed the intermediate {filepath}.")