# app.py import os import gradio as gr import pandas as pd import comtradeapicall from huggingface_hub import InferenceClient from deep_translator import GoogleTranslator import spaces # اضافه‌شده برای مدیریت GPU روی ZeroGPU Spaces # کلید COMTRADE subscription_key = os.getenv("COMTRADE_API_KEY", "") # توکن Hugging Face hf_token = os.getenv("HF_API_TOKEN") client = InferenceClient(token=hf_token) translator = GoogleTranslator(source='en', target='fa') def get_importers(hs_code: str, year: str, month: str): period = f"{year}{int(month):02d}" df = comtradeapicall.previewFinalData( typeCode='C', freqCode='M', clCode='HS', period=period, reporterCode=None, cmdCode=hs_code, flowCode='M', partnerCode=None, partner2Code=None, customsCode=None, motCode=None, maxRecords=500, includeDesc=True ) if df is None or df.empty: return pd.DataFrame() # خالی # فقط ستون‌های مورد نیاز را نگه‌دار df = df[['ptCode', 'ptTitle', 'TradeValue']] df.columns = ['کد کشور', 'نام کشور', 'ارزش CIF'] return df @spaces.GPU def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str): if table_data is None or table_data.empty: return "ابتدا باید اطلاعات واردات را نمایش دهید." table_str = table_data.to_string(index=False) period = f"{year}/{int(month):02d}" prompt = ( f"The following table shows countries that imported a product with HS code {hs_code} during the period {period}:\n" f"{table_str}\n\n" "Please provide a detailed and comprehensive analysis of market trends, " "risks, and opportunities for a new exporter entering this market. " "Include competitive landscape, pricing benchmarks, logistical considerations, " "risk management techniques, and steps to establish local partnerships." ) try: print("در حال فراخوانی مدل mistralai/Mixtral-8x7B-Instruct-v0.1...") outputs = client.text_generation( prompt=prompt, model="mistralai/Mixtral-8x7B-Instruct-v0.1", max_new_tokens=1024 ) print("خروجی مدل دریافت شد (به انگلیسی):") print(outputs) translated_outputs = translator.translate(outputs) print("خروجی ترجمه‌شده به فارسی:") print(translated_outputs) return translated_outputs except Exception as e: error_msg = f"خطا در تولید مشاوره: {str(e)}" print(error_msg) return error_msg with gr.Blocks() as demo: gr.Markdown("## تحلیل واردات بر اساس کد HS و ارائه مشاوره تخصصی") with gr.Row(): inp_hs = gr.Textbox(label="کد HS", placeholder="مثلاً 100610") inp_year = gr.Textbox(label="سال", placeholder="مثلاً 2023") inp_month = gr.Textbox(label="ماه", placeholder="مثلاً 1 تا 12") btn_show = gr.Button("نمایش واردات") out_table = gr.Dataframe( headers=["کد کشور", "نام کشور", "ارزش CIF"], datatype=["number", "text", "number"], interactive=True, ) btn_show.click(get_importers, [inp_hs, inp_year, inp_month], out_table) btn_advice = gr.Button("ارائه مشاوره تخصصی") out_advice = gr.Textbox(label="مشاوره تخصصی", lines=6) btn_advice.click( provide_advice, inputs=[out_table, inp_hs, inp_year, inp_month], outputs=out_advice ) if __name__ == "__main__": demo.launch()