# app.py import os import pandas as pd import gradio as gr import comtradeapicall from huggingface_hub import InferenceClient from deep_translator import GoogleTranslator import spaces # برای مدیریت GPU کرایهای # --- بارگذاری HS DATA از CSV گیتهاب --- HS_CSV_URL = ( "https://raw.githubusercontent.com/" "datasets/harmonized-system/master/data/harmonized-system.csv" ) hs_df = pd.read_csv(HS_CSV_URL, dtype=str) def get_product_name(hs_code: str) -> str: code4 = str(hs_code).zfill(4) row = hs_df[hs_df["hscode"] == code4] return row.iloc[0]["description"] if not row.empty else "–" # --- تابع دریافت واردات و پردازش ستونها --- def get_importers(hs_code: str, year: str, month: str): product_name = get_product_name(hs_code) period = f"{year}{int(month):02d}" df = comtradeapicall.previewFinalData( typeCode='C', freqCode='M', clCode='HS', period=period, reporterCode=None, cmdCode=hs_code, flowCode='M', partnerCode=None, partner2Code=None, customsCode=None, motCode=None, maxRecords=500, includeDesc=True ) if df is None or df.empty: return product_name, pd.DataFrame() # شناسایی ستونهای مورد نیاز code_col = next((c for c in df.columns if 'code' in c.lower()), None) title_col = next((c for c in df.columns if 'title' in c.lower()), None) value_col = next((c for c in df.columns if 'value' in c.lower()), None) if not (code_col and title_col and value_col): return product_name, df df_sorted = df.sort_values(value_col, ascending=False).head(10) out = df_sorted[[code_col, title_col, value_col]] out.columns = ['کد کشور', 'نام کشور', 'ارزش CIF'] return product_name, out # --- تابع تولید مشاوره تخصصی با GPU کرایهای --- hf_token = os.getenv("HF_API_TOKEN") client = InferenceClient(token=hf_token) translator = GoogleTranslator(source='en', target='fa') @spaces.GPU def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str): if table_data is None or table_data.empty: return "