File size: 12,310 Bytes
16f0ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f54df3
16f0ad7
 
 
 
4f54df3
16f0ad7
 
6dea60d
 
 
16f0ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5720fe
 
4f54df3
16f0ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f54df3
16f0ad7
 
 
 
4f54df3
16f0ad7
4f54df3
16f0ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f54df3
16f0ad7
 
 
 
 
 
 
4f54df3
16f0ad7
4f54df3
 
 
 
 
 
 
 
 
 
 
16f0ad7
4f54df3
 
 
 
 
 
 
 
 
16f0ad7
4f54df3
16f0ad7
 
 
 
 
 
 
 
 
 
4f54df3
 
16f0ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f54df3
16f0ad7
 
 
 
 
 
 
 
 
 
 
 
4f54df3
16f0ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f54df3
 
16f0ad7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import argparse

import models
import time
import sys
import warnings
#from pathlib import Path



import torch
import numpy as np
from scipy.stats import norm
from scipy.io.wavfile import write
from torch.nn.utils.rnn import pad_sequence
#import style_controller
from common.utils import load_wav_to_torch
from langid.langid import WordLid

from common import utils, layers

from common.text.text_processing import TextProcessing
from collections import Counter

import os
os.environ["CUDA_VISIBLE_DEVICES"]=""
#device = "cuda:0"
device = "cpu"

vocoder = "hifigan"
SHARPEN = True
from hifigan.data_function import MAX_WAV_VALUE, mel_spectrogram
from hifigan.models import Denoiser
import json
from scipy import ndimage

import os

def parse_args(parser):
    """
    Parse commandline arguments.
    """
    parser.add_argument('-i', '--input', type=str, required=False,
                        help='Full path to the input text (phareses separated by newlines)')
    parser.add_argument('-o', '--output', default=None,
                        help='Output folder to save audio (file per phrase)')
    parser.add_argument('--log-file', type=str, default=None,
                        help='Path to a DLLogger log file')
    parser.add_argument('--save-mels', action='store_true', help='')
    parser.add_argument('--cuda', action='store_true',
                        help='Run inference on a GPU using CUDA')

    parser.add_argument('--cudnn-benchmark', action='store_true',
                        help='Enable cudnn benchmark mode')


    parser.add_argument('--fastpitch', type=str, default='output_multilang/FastPitch_checkpoint_50.pt',
                        help='Full path to the generator checkpoint file (skip to use ground truth mels)') #########
    parser.add_argument('-d', '--denoising-strength', default=0.01, type=float,
                        help='WaveGlow denoising')
    parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
                        help='Sampling rate')
    parser.add_argument('--stft-hop-length', type=int, default=256,
                        help='STFT hop length for estimating audio length from mel size')
    parser.add_argument('--amp', action='store_true',default=False,
                        help='Inference with AMP')
    parser.add_argument('-bs', '--batch-size', type=int, default=1)
    
    parser.add_argument('--ema', action='store_true',
                        help='Use EMA averaged model (if saved in checkpoints)')
    
    parser.add_argument('--speaker', type=int, default=0,
                        help='Speaker ID for a multi-speaker model')
    parser.add_argument('--language', type=int, default=0,
                        help='Language ID for a multilingual model')
    parser.add_argument('--p-arpabet', type=float, default=0.0, help='') ################

  
    text_processing = parser.add_argument_group('Text processing parameters')
    text_processing.add_argument('--text-cleaners', nargs='*',
                                 default=['basic_cleaners'], type=str,
                                 help='Type of text cleaners for input text')
    text_processing.add_argument('--symbol-set', type=str, default='uralic', #'all_sami', #################
                                 help='Define symbol set for input text')

    cond = parser.add_argument_group('conditioning on additional attributes')

    cond.add_argument('--n-speakers', type=int, default=30, #10
                      help='Number of speakers in the model.')
    cond.add_argument('--n-languages', type=int, default=6, #3
                      help='Number of languages in the model.')

    return parser



class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self

def load_model_from_ckpt(checkpoint_path, ema, model):

    
    checkpoint_data = torch.load(checkpoint_path,map_location = device)
    status = ''

    if 'state_dict' in checkpoint_data:
        sd = checkpoint_data['state_dict']
        if ema and 'ema_state_dict' in checkpoint_data:
            sd = checkpoint_data['ema_state_dict']
            status += ' (EMA)'
        elif ema and not 'ema_state_dict' in checkpoint_data:
            print(f'WARNING: EMA weights missing for {checkpoint_data}')

        if any(key.startswith('module.') for key in sd):
            sd = {k.replace('module.', ''): v for k,v in sd.items()}
        status += ' ' + str(model.load_state_dict(sd, strict=False))
    else:
        model = checkpoint_data['model']
    print(f'Loaded {checkpoint_path}{status}')

    return model
    
def load_and_setup_model(model_name, parser, checkpoint, amp, device,
                         unk_args=[], forward_is_infer=False, ema=True,
                         jitable=False):


    model_parser = models.parse_model_args(model_name, parser, add_help=False)
    model_args, model_unk_args = model_parser.parse_known_args()
    unk_args[:] = list(set(unk_args) & set(model_unk_args))

    setattr(model_args, "energy_conditioning",True)
    model_config = models.get_model_config(model_name, model_args)
    # print(model_config)
    model = models.get_model(model_name, model_config, device,
                             forward_is_infer=forward_is_infer,
                             jitable=jitable)
    
    if checkpoint is not None:
        model = load_model_from_ckpt(checkpoint, ema, model)

    amp = False
    if amp:
        model.half()
    model.eval()
 
    return model.to(device)

class Synthesizer:

    def _load_pyt_or_ts_model(self, model_name, ckpt_path, format = 'pyt'):

        if format == 'ts':

            model = models.load_and_setup_ts_model(model_name, ckpt_path,
                                                   False, device)
            model_train_setup = {}
            return model, model_train_setup
          
        is_ts_based_infer = False
        model, _, model_train_setup = models.load_and_setup_model(
            model_name, self.parser, ckpt_path, False, device,
            unk_args=self.unk_args, forward_is_infer=True, jitable=is_ts_based_infer)
        
        if is_ts_based_infer:
            model = torch.jit.script(model)
        return model, model_train_setup



    def __init__(self): 
        parser = argparse.ArgumentParser(description='PyTorch FastPitch Inference',
                                     allow_abbrev=False)
        self.parser = parse_args(parser)
        
        self.args, self.unk_args = self.parser.parse_known_args()
        self.generator = load_and_setup_model(
            'FastPitch', parser, self.args.fastpitch, self.args.amp, device,
            unk_args=self.unk_args, forward_is_infer=True, ema=self.args.ema,
            jitable=False)
        

        self.hifigan_model = "pretrained_models/hifigan/hifigan_gen_checkpoint_10000_ft.pt" # Better with Sander!

        #self.hifigan_model = "pretrained_models/hifigan/hifigan_gen_checkpoint_6500.pt"
        #self.vocoder = UnivNetModel.from_pretrained(model_name="tts_en_libritts_univnet")
        self.vocoder, voc_train_setup= self._load_pyt_or_ts_model('HiFi-GAN', self.hifigan_model)
        self.denoiser = Denoiser(self.vocoder,device=device) #, win_length=self.args.win_length).to(device)
        self.tp = TextProcessing(self.args.symbol_set, self.args.text_cleaners, p_arpabet=0.0)
        self.lid = WordLid("langid/lang_id_model_q.bin")
        
   
    def unsharp_mask(self, img, radius=1, amount=1):
        blurred = ndimage.gaussian_filter(img, radius)
        sharpened = img + amount * ( img - blurred)
        return sharpened

    def speak(self, text, output_file="/tmp/tmp", spkr=0, lang=0, l_weight=1, s_weight=1, pace=0.95, clarity=1, guess_lang=True):

        text = " "+text+" "

        if guess_lang:
            lang = self.lid.get_lang_array(text)
            main_lang = Counter(lang).most_common(1)[0][0]

            lang = torch.tensor(lang).to(device)
            lang_weight = torch.zeros(len(lang))
            lang_weight[:] = l_weight
            lang_weight[lang!=main_lang] = 0.5*l_weight
            
        text = self.tp.encode_text(text)

        if guess_lang == False:
            lang = torch.tensor(lang).to(device)
        else:
            if len(text) != len(lang):
                print("text length not equal to language list length!")
                lang = lang[0]
                l_weight = l_weight[0]
       
        text = torch.LongTensor([text]).to(device)
       
        for p in [0]:
                  
            with torch.no_grad():
                print(s_weight, l_weight)
                mel, mel_lens, *_ = self.generator(text, pace, max_duration=15, speaker=spkr, language=lang, speaker_weight=s_weight, language_weight=l_weight) #, ref_vector=embedding, speaker=speaker_i) #, **gen_kw, speaker 0 = bad audio, speaker 1 = better audio   
             
            if SHARPEN:
                
                mel_np = mel.float().data.cpu().numpy()[0]
                tgt_min = -11
                tgt_max = 1.5
                #print(np.min(mel_np) , np.max(mel_np))
                mel_np = self.unsharp_mask(mel_np, radius = 0.5, amount=0.5)
                mel_np = self.unsharp_mask(mel_np, radius = 3, amount=.05)
                # mel_np = self.unsharp_mask(mel_np, radius = 7, amount=0.05)
  
                for i in range(0, 80):
                    mel_np[i,:]+=(i-30)*clarity*0.02
                mel_np = (mel_np-np.min(mel_np))/ (np.max(mel_np)-np.min(mel_np)) * (tgt_max - tgt_min) + tgt_min
                mel[0] = torch.from_numpy(mel_np).float().to(device)
            """
            mel_np = mel.float().data.cpu().numpy()[0]
            blurred_f = ndimage.gaussian_filter(mel_np, 1.0) #3
            alpha = 0.2 #0.3 ta
            mel_np = mel_np + alpha * (mel_np - blurred_f)
            blurred_f = ndimage.gaussian_filter(mel_np, 3.0) #3
            alpha = 0.1 # 0.1 ta
            sharpened = mel_np + alpha * (mel_np - blurred_f)
            
            for i in range(0,80):
                sharpened[i, :]+=(i-40)*0.01 #0.01 ta
            mel[0] = torch.from_numpy(sharpened).float().to(device)
            
             """
            with torch.no_grad():

                y_g_hat = self.vocoder(mel).float() ###########
                #y_g_hat = self.denoiser(y_g_hat.squeeze(1), strength=0.01) #[:, 0]
                audio = y_g_hat.squeeze()
                # normalize volume
                audio = audio/torch.max(torch.abs(audio))*0.95*32768
                audio = audio.cpu().numpy().astype('int16')
                   
                    
                write(output_file+".wav", 22050, audio)
            
            #os.system("play -q "+output_file+".wav")
            return audio
    

if __name__ == '__main__':
    syn = Synthesizer()
    hifigan = syn.hifigan_model
    hifigan_n = hifigan.replace(".pt", "")
    fastpitch = syn.args.fastpitch
    fastpitch_n = fastpitch.replace(".pt", "")
    print(hifigan_n + " " + fastpitch_n)

    hifigan_n_short = hifigan_n.split("/")
    hifigan_n_shorter = hifigan_n_short[2].split("_")
    hifigan_n_shortest = hifigan_n_shorter[3]

    fastpitch_n_short = fastpitch_n.split("/")
    fastpitch_n_shorter = fastpitch_n_short[1].split("_")
    fastpitch_n_shortest = fastpitch_n_shorter[2]
        
    #syn.speak("Gå lij riek mælggadav vádtsám, de bådij vijmak tjáppa vuobmáj.")
    i = 0
    spkr = 1
    lang = 1
    while (1==1):
        
        text = input(">")
        text1 = text.split(" ")
        syn.speak(text, output_file="/tmp/tmp.wav", spkr=14, lang=4)
        syn.speak(text, output_file="/tmp/tmp.wav", spkr=14, lang=4, guess_lang=False)
        continue
        for s in range(1,10):
            for l in range(3): ## 
                print("speaker", s, "language", l) ##
                syn.speak(text, output_file="/tmp/"+str(i)+"_"+text1[0]+"_"+str(s)+"_"+str(l)+"_FP_"+fastpitch_n_shortest+"univnet", spkr=s, lang=l)
                #syn.speak(text, output_file="/home/hiovain/DeepLearningExamples/PyTorch/SpeechSynthesis/FastPitchMulti/inf_output_multi/"+str(i)+"_"+text1[0]+"_"+str(s)+"_"+str(l)+"_FP_"+fastpitch_n_shortest+"univnet", spkr=s, lang=l)
                i += 1