6L-TTS / fastpitch /alignment.py
kathiasi's picture
Upload 100 files
16f0ad7 verified
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from numba import jit, prange
@jit(nopython=True)
def mas(log_attn_map, width=1):
# assumes mel x text
opt = np.zeros_like(log_attn_map)
log_attn_map = log_attn_map.copy()
log_attn_map[0, 1:] = -np.inf
log_p = np.zeros_like(log_attn_map)
log_p[0, :] = log_attn_map[0, :]
prev_ind = np.zeros_like(log_attn_map, dtype=np.int64)
for i in range(1, log_attn_map.shape[0]):
for j in range(log_attn_map.shape[1]): # for each text dim
prev_j = np.arange(max(0, j-width), j+1)
prev_log = np.array([log_p[i-1, prev_idx] for prev_idx in prev_j])
ind = np.argmax(prev_log)
log_p[i, j] = log_attn_map[i, j] + prev_log[ind]
prev_ind[i, j] = prev_j[ind]
# now backtrack
curr_text_idx = log_attn_map.shape[1]-1
for i in range(log_attn_map.shape[0]-1, -1, -1):
opt[i, curr_text_idx] = 1
curr_text_idx = prev_ind[i, curr_text_idx]
opt[0, curr_text_idx] = 1
return opt
@jit(nopython=True)
def mas_width1(log_attn_map):
"""mas with hardcoded width=1"""
# assumes mel x text
neg_inf = log_attn_map.dtype.type(-np.inf)
log_p = log_attn_map.copy()
log_p[0, 1:] = neg_inf
for i in range(1, log_p.shape[0]):
prev_log1 = neg_inf
for j in range(log_p.shape[1]):
prev_log2 = log_p[i-1, j]
log_p[i, j] += max(prev_log1, prev_log2)
prev_log1 = prev_log2
# now backtrack
opt = np.zeros_like(log_p)
one = opt.dtype.type(1)
j = log_p.shape[1]-1
for i in range(log_p.shape[0]-1, 0, -1):
opt[i, j] = one
if log_p[i-1, j-1] >= log_p[i-1, j]:
j -= 1
if j == 0:
opt[1:i, j] = one
break
opt[0, j] = one
return opt
@jit(nopython=True, parallel=True)
def b_mas(b_log_attn_map, in_lens, out_lens, width=1):
assert width == 1
attn_out = np.zeros_like(b_log_attn_map)
for b in prange(b_log_attn_map.shape[0]):
out = mas_width1(b_log_attn_map[b, 0, :out_lens[b], :in_lens[b]])
attn_out[b, 0, :out_lens[b], :in_lens[b]] = out
return attn_out