6L-TTS / fastpitch /loss_function.py
kathiasi's picture
Upload 100 files
16f0ad7 verified
# *****************************************************************************
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
import torch.nn.functional as F
from torch import nn
from common.utils import mask_from_lens
from fastpitch.attn_loss_function import AttentionCTCLoss
class FastPitchLoss(nn.Module):
def __init__(self, dur_predictor_loss_scale=1.0,
pitch_predictor_loss_scale=1.0, attn_loss_scale=1.0,
energy_predictor_loss_scale=0.1):
super(FastPitchLoss, self).__init__()
self.dur_predictor_loss_scale = dur_predictor_loss_scale
self.pitch_predictor_loss_scale = pitch_predictor_loss_scale
self.energy_predictor_loss_scale = energy_predictor_loss_scale
self.attn_loss_scale = attn_loss_scale
self.attn_ctc_loss = AttentionCTCLoss()
def forward(self, model_out, targets, is_training=True, meta_agg='mean'):
(mel_out, dec_mask, dur_pred, log_dur_pred, pitch_pred, pitch_tgt,
energy_pred, energy_tgt, attn_soft, attn_hard, attn_dur,
attn_logprob) = model_out
(mel_tgt, in_lens, out_lens) = targets
dur_tgt = attn_dur
dur_lens = in_lens
mel_tgt.requires_grad = False
# (B,H,T) => (B,T,H)
mel_tgt = mel_tgt.transpose(1, 2)
dur_mask = mask_from_lens(dur_lens, max_len=dur_tgt.size(1))
log_dur_tgt = torch.log(dur_tgt.float() + 1)
loss_fn = F.mse_loss
dur_pred_loss = loss_fn(log_dur_pred, log_dur_tgt, reduction='none')
dur_pred_loss = (dur_pred_loss * dur_mask).sum() / dur_mask.sum()
ldiff = mel_tgt.size(1) - mel_out.size(1)
mel_out = F.pad(mel_out, (0, 0, 0, ldiff, 0, 0), value=0.0)
mel_mask = mel_tgt.ne(0).float()
loss_fn = F.mse_loss
mel_loss = loss_fn(mel_out, mel_tgt, reduction='none')
mel_loss = (mel_loss * mel_mask).sum() / mel_mask.sum()
ldiff = pitch_tgt.size(2) - pitch_pred.size(2)
pitch_pred = F.pad(pitch_pred, (0, ldiff, 0, 0, 0, 0), value=0.0)
pitch_loss = F.mse_loss(pitch_tgt, pitch_pred, reduction='none')
pitch_loss = (pitch_loss * dur_mask.unsqueeze(1)).sum() / dur_mask.sum()
if energy_pred is not None:
energy_pred = F.pad(energy_pred, (0, ldiff, 0, 0), value=0.0)
energy_loss = F.mse_loss(energy_tgt, energy_pred, reduction='none')
energy_loss = (energy_loss * dur_mask).sum() / dur_mask.sum()
else:
energy_loss = 0
# Attention loss
attn_loss = self.attn_ctc_loss(attn_logprob, in_lens, out_lens)
loss = (mel_loss
+ dur_pred_loss * self.dur_predictor_loss_scale
+ pitch_loss * self.pitch_predictor_loss_scale
+ energy_loss * self.energy_predictor_loss_scale
+ attn_loss * self.attn_loss_scale)
meta = {
'loss': loss.clone().detach(),
'mel_loss': mel_loss.clone().detach(),
'duration_predictor_loss': dur_pred_loss.clone().detach(),
'pitch_loss': pitch_loss.clone().detach(),
'attn_loss': attn_loss.clone().detach(),
'dur_error': (torch.abs(dur_pred - dur_tgt).sum()
/ dur_mask.sum()).detach(),
}
if energy_pred is not None:
meta['energy_loss'] = energy_loss.clone().detach()
assert meta_agg in ('sum', 'mean')
if meta_agg == 'sum':
bsz = mel_out.size(0)
meta = {k: v * bsz for k, v in meta.items()}
return loss, meta