6L-TTS / fastpitch /model.py
kathiasi's picture
Upload 100 files
16f0ad7 verified
# *****************************************************************************
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from common import filter_warnings
from common.layers import ConvReLUNorm
from common.utils import mask_from_lens
from fastpitch.alignment import b_mas, mas_width1
from fastpitch.attention import ConvAttention
from fastpitch.transformer import FFTransformer
def regulate_len(durations, enc_out, pace: float = 1.0,
mel_max_len: Optional[int] = None):
"""If target=None, then predicted durations are applied"""
dtype = enc_out.dtype
reps = durations.float() / pace
reps = (reps + 0.5).long()
dec_lens = reps.sum(dim=1)
max_len = dec_lens.max()
reps_cumsum = torch.cumsum(F.pad(reps, (1, 0, 0, 0), value=0.0),
dim=1)[:, None, :]
reps_cumsum = reps_cumsum.to(dtype)
range_ = torch.arange(max_len, device=enc_out.device)[None, :, None]
mult = ((reps_cumsum[:, :, :-1] <= range_) &
(reps_cumsum[:, :, 1:] > range_))
mult = mult.to(dtype)
enc_rep = torch.matmul(mult, enc_out)
if mel_max_len is not None:
enc_rep = enc_rep[:, :mel_max_len]
dec_lens = torch.clamp_max(dec_lens, mel_max_len)
return enc_rep, dec_lens
def average_pitch(pitch, durs):
durs_cums_ends = torch.cumsum(durs, dim=1).long()
durs_cums_starts = F.pad(durs_cums_ends[:, :-1], (1, 0))
pitch_nonzero_cums = F.pad(torch.cumsum(pitch != 0.0, dim=2), (1, 0))
pitch_cums = F.pad(torch.cumsum(pitch, dim=2), (1, 0))
bs, l = durs_cums_ends.size()
n_formants = pitch.size(1)
dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l)
dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l)
pitch_sums = (torch.gather(pitch_cums, 2, dce)
- torch.gather(pitch_cums, 2, dcs)).float()
pitch_nelems = (torch.gather(pitch_nonzero_cums, 2, dce)
- torch.gather(pitch_nonzero_cums, 2, dcs)).float()
pitch_avg = torch.where(pitch_nelems == 0.0, pitch_nelems,
pitch_sums / pitch_nelems)
return pitch_avg
class TemporalPredictor(nn.Module):
"""Predicts a single float per each temporal location"""
def __init__(self, input_size, filter_size, kernel_size, dropout,
n_layers=2, n_predictions=1):
super(TemporalPredictor, self).__init__()
self.layers = nn.Sequential(*[
ConvReLUNorm(input_size if i == 0 else filter_size, filter_size,
kernel_size=kernel_size, dropout=dropout)
for i in range(n_layers)]
)
self.n_predictions = n_predictions
self.fc = nn.Linear(filter_size, self.n_predictions, bias=True)
def forward(self, enc_out, enc_out_mask):
out = enc_out * enc_out_mask
out = self.layers(out.transpose(1, 2)).transpose(1, 2)
out = self.fc(out) * enc_out_mask
return out
class FastPitch(nn.Module):
def __init__(self, n_mel_channels, n_symbols, padding_idx,
symbols_embedding_dim, in_fft_n_layers, in_fft_n_heads,
in_fft_d_head,
in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size,
in_fft_output_size,
p_in_fft_dropout, p_in_fft_dropatt, p_in_fft_dropemb,
out_fft_n_layers, out_fft_n_heads, out_fft_d_head,
out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size,
out_fft_output_size,
p_out_fft_dropout, p_out_fft_dropatt, p_out_fft_dropemb,
dur_predictor_kernel_size, dur_predictor_filter_size,
p_dur_predictor_dropout, dur_predictor_n_layers,
pitch_predictor_kernel_size, pitch_predictor_filter_size,
p_pitch_predictor_dropout, pitch_predictor_n_layers,
pitch_embedding_kernel_size,
energy_conditioning,
energy_predictor_kernel_size, energy_predictor_filter_size,
p_energy_predictor_dropout, energy_predictor_n_layers,
energy_embedding_kernel_size,
n_speakers, speaker_emb_weight, n_languages, pitch_conditioning_formants=1):
super(FastPitch, self).__init__()
self.encoder = FFTransformer(
n_layer=in_fft_n_layers, n_head=in_fft_n_heads,
d_model=symbols_embedding_dim,
d_head=in_fft_d_head,
d_inner=in_fft_conv1d_filter_size,
kernel_size=in_fft_conv1d_kernel_size,
dropout=p_in_fft_dropout,
dropatt=p_in_fft_dropatt,
dropemb=p_in_fft_dropemb,
embed_input=True,
d_embed=symbols_embedding_dim,
n_embed=n_symbols,
padding_idx=padding_idx)
if n_speakers > 1:
print(n_speakers, "### Is the number of speakers in this model ###") ################################################
self.speaker_emb = nn.Embedding(n_speakers, symbols_embedding_dim)
else:
self.speaker_emb = None
self.speaker_emb_weight = speaker_emb_weight
#ANT: added language embedding
if n_languages > 1:
print(n_languages, "### Is the number of languages in this model ###") ################################################
self.language_emb = nn.Embedding(n_languages, symbols_embedding_dim)
else:
self.language_emb = None
self.duration_predictor = TemporalPredictor(
in_fft_output_size,
filter_size=dur_predictor_filter_size,
kernel_size=dur_predictor_kernel_size,
dropout=p_dur_predictor_dropout, n_layers=dur_predictor_n_layers
)
self.decoder = FFTransformer(
n_layer=out_fft_n_layers, n_head=out_fft_n_heads,
d_model=symbols_embedding_dim,
d_head=out_fft_d_head,
d_inner=out_fft_conv1d_filter_size,
kernel_size=out_fft_conv1d_kernel_size,
dropout=p_out_fft_dropout,
dropatt=p_out_fft_dropatt,
dropemb=p_out_fft_dropemb,
embed_input=False,
d_embed=symbols_embedding_dim
)
self.pitch_predictor = TemporalPredictor(
in_fft_output_size,
filter_size=pitch_predictor_filter_size,
kernel_size=pitch_predictor_kernel_size,
dropout=p_pitch_predictor_dropout, n_layers=pitch_predictor_n_layers,
n_predictions=pitch_conditioning_formants
)
self.pitch_emb = nn.Conv1d(
pitch_conditioning_formants, symbols_embedding_dim,
kernel_size=pitch_embedding_kernel_size,
padding=int((pitch_embedding_kernel_size - 1) / 2))
# Store values precomputed for training data within the model
self.register_buffer('pitch_mean', torch.zeros(1))
self.register_buffer('pitch_std', torch.zeros(1))
self.energy_conditioning = energy_conditioning
if energy_conditioning:
self.energy_predictor = TemporalPredictor(
in_fft_output_size,
filter_size=energy_predictor_filter_size,
kernel_size=energy_predictor_kernel_size,
dropout=p_energy_predictor_dropout,
n_layers=energy_predictor_n_layers,
n_predictions=1
)
self.energy_emb = nn.Conv1d(
1, symbols_embedding_dim,
kernel_size=energy_embedding_kernel_size,
padding=int((energy_embedding_kernel_size - 1) / 2))
self.proj = nn.Linear(out_fft_output_size, n_mel_channels, bias=True)
self.attention = ConvAttention(
n_mel_channels, 0, symbols_embedding_dim,
use_query_proj=True, align_query_enc_type='3xconv')
def binarize_attention(self, attn, in_lens, out_lens):
"""For training purposes only. Binarizes attention with MAS.
These will no longer recieve a gradient.
Args:
attn: B x 1 x max_mel_len x max_text_len
"""
b_size = attn.shape[0]
with torch.no_grad():
attn_out_cpu = np.zeros(attn.data.shape, dtype=np.float32)
log_attn_cpu = torch.log(attn.data).to(device='cpu', dtype=torch.float32)
log_attn_cpu = log_attn_cpu.numpy()
out_lens_cpu = out_lens.cpu()
in_lens_cpu = in_lens.cpu()
for ind in range(b_size):
hard_attn = mas_width1(
log_attn_cpu[ind, 0, :out_lens_cpu[ind], :in_lens_cpu[ind]])
attn_out_cpu[ind, 0, :out_lens_cpu[ind], :in_lens_cpu[ind]] = hard_attn
attn_out = torch.tensor(
attn_out_cpu, device=attn.get_device(), dtype=attn.dtype)
return attn_out
def binarize_attention_parallel(self, attn, in_lens, out_lens):
"""For training purposes only. Binarizes attention with MAS.
These will no longer recieve a gradient.
Args:
attn: B x 1 x max_mel_len x max_text_len
"""
with torch.no_grad():
log_attn_cpu = torch.log(attn.data).cpu().numpy()
attn_out = b_mas(log_attn_cpu, in_lens.cpu().numpy(),
out_lens.cpu().numpy(), width=1)
return torch.from_numpy(attn_out).to(attn.get_device())
def forward(self, inputs, use_gt_pitch=True, pace=1.0, max_duration=75):
#ANT: added language
(inputs, input_lens, mel_tgt, mel_lens, pitch_dense, energy_dense,
speaker, language, attn_prior, audiopaths) = inputs
text_max_len = inputs.size(1)
mel_max_len = mel_tgt.size(2)
# Calculate speaker embedding
conditionings = []
if self.speaker_emb is None:
spk_emb = 0
else:
spk_emb = self.speaker_emb(speaker).unsqueeze(1)
spk_emb.mul_(self.speaker_emb_weight)
conditionings.append(spk_emb)
# ANT: added language
if self.language_emb is None:
language_emb = 0
else:
language_emb = self.language_emb(language).unsqueeze(1)
conditionings.append(language_emb)
# Input FFT
#enc_out, enc_mask = self.encoder(inputs, conditioning=[])
enc_out, enc_mask = self.encoder(inputs, conditioning=conditionings)
# Predict durations
log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1)
dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, max_duration)
# Predict pitch
pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1)
# Alignment
text_emb = self.encoder.word_emb(inputs)
# make sure to do the alignments before folding
attn_mask = mask_from_lens(input_lens, max_len=text_max_len)
attn_mask = attn_mask[..., None] == 0
# attn_mask should be 1 for unused timesteps in the text_enc_w_spkvec tensor
attn_soft, attn_logprob = self.attention(
mel_tgt, text_emb.permute(0, 2, 1), mel_lens, attn_mask,
key_lens=input_lens, keys_encoded=enc_out, attn_prior=attn_prior)
attn_hard = self.binarize_attention(attn_soft, input_lens, mel_lens)
# Viterbi --> durations
attn_hard_dur = attn_hard.sum(2)[:, 0, :]
dur_tgt = attn_hard_dur
if not torch.all(torch.eq(dur_tgt.sum(dim=1), mel_lens)):
print(audiopaths,input_lens,dur_tgt.sum(dim=1), mel_lens)
assert torch.all(torch.eq(dur_tgt.sum(dim=1), mel_lens))
# Average pitch over characters
pitch_tgt = average_pitch(pitch_dense, dur_tgt)
if use_gt_pitch and pitch_tgt is not None:
pitch_emb = self.pitch_emb(pitch_tgt)
else:
pitch_emb = self.pitch_emb(pitch_pred)
enc_out = enc_out + pitch_emb.transpose(1, 2)
# Predict energy
if self.energy_conditioning:
energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1)
# Average energy over characters
energy_tgt = average_pitch(energy_dense.unsqueeze(1), dur_tgt)
energy_tgt = torch.log(1.0 + energy_tgt)
energy_emb = self.energy_emb(energy_tgt)
energy_tgt = energy_tgt.squeeze(1)
enc_out = enc_out + energy_emb.transpose(1, 2)
else:
energy_pred = None
energy_tgt = None
len_regulated, dec_lens = regulate_len(
dur_tgt, enc_out, pace, mel_max_len)
# Output FFT
dec_out, dec_mask = self.decoder(len_regulated, dec_lens)
mel_out = self.proj(dec_out)
return (mel_out, dec_mask, dur_pred, log_dur_pred, pitch_pred,
pitch_tgt, energy_pred, energy_tgt, attn_soft, attn_hard,
attn_hard_dur, attn_logprob)
def infer(self, inputs, pace=1.0, dur_tgt=None, pitch_tgt=None,
energy_tgt=None, pitch_transform=None, max_duration=75,
speaker=0, language=0, speaker_weight=1.0, language_weight=1.0):
if self.speaker_emb is None:
spk_emb = 0
else:
print("using speaker embeddings")
speaker = (torch.ones(inputs.size(0)).long().to(inputs.device)
* speaker)
spk_emb = self.speaker_emb(speaker).unsqueeze(1)
print("spkr weight", speaker_weight)
spk_emb = spk_emb *speaker_weight
# ANT: added language
if self.language_emb is None:
language_emb = 0
else:
print("using language embeddings")
language = (torch.ones(inputs.size(0)).long().to(inputs.device)
* language)
language_emb = self.language_emb(language).unsqueeze(1)
language_emb = language_emb * language_weight
# Input FFT
enc_out, enc_mask = self.encoder(inputs, conditioning=[spk_emb, language_emb])
# Predict durations
log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1)
dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, max_duration)
# Pitch over chars
pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1)
if pitch_transform is not None:
if self.pitch_std[0] == 0.0:
# XXX LJSpeech-1.1 defaults
mean, std = 218.14, 67.24
else:
mean, std = self.pitch_mean[0], self.pitch_std[0]
pitch_pred = pitch_transform(pitch_pred, enc_mask.sum(dim=(1,2)),
mean, std)
if pitch_tgt is None:
pitch_emb = self.pitch_emb(pitch_pred).transpose(1, 2)
else:
pitch_emb = self.pitch_emb(pitch_tgt).transpose(1, 2)
enc_out = enc_out + pitch_emb
# Predict energy
if self.energy_conditioning:
if energy_tgt is None:
energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1)
energy_emb = self.energy_emb(energy_pred.unsqueeze(1)).transpose(1, 2)
else:
energy_emb = self.energy_emb(energy_tgt).transpose(1, 2)
enc_out = enc_out + energy_emb
else:
energy_pred = None
len_regulated, dec_lens = regulate_len(
dur_pred if dur_tgt is None else dur_tgt,
enc_out, pace, mel_max_len=None)
dec_out, dec_mask = self.decoder(len_regulated, dec_lens)
mel_out = self.proj(dec_out)
# mel_lens = dec_mask.squeeze(2).sum(axis=1).long()
mel_out = mel_out.permute(0, 2, 1) # For inference.py
return mel_out, dec_lens, dur_pred, pitch_pred, energy_pred