6L-TTS / hifigan /models_ch_last_.py
kathiasi's picture
Upload 100 files
16f0ad7 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d, ConvTranspose2d, AvgPool2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from common.utils import init_weights, get_padding, print_once
LRELU_SLOPE = 0.1
class ResBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[0], 1),
padding=(get_padding(kernel_size, dilation[0]), 0))),
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[1], 1),
padding=(get_padding(kernel_size, dilation[1]), 0))),
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[2], 1),
padding=(get_padding(kernel_size, dilation[2]), 0)))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1,
padding=(get_padding(kernel_size, 1), 0))),
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1,
padding=(get_padding(kernel_size, 1), 0))),
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1,
padding=(get_padding(kernel_size, 1), 0)))
])
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Generator(torch.nn.Module):
def __init__(self, h):
super(Generator, self).__init__()
self.h = h
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.conv_pre = weight_norm(Conv2d(80, h.upsample_initial_channel, (7,1), (1,1), padding=(3,0)))
assert h.resblock == '1', 'Only ResBlock1 currently supported for NHWC'
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(weight_norm(
# ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)),
# k, u, padding=(k-u)//2)))
ConvTranspose2d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)),
(k, 1), (u, 1), padding=((k-u)//2, 0))))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d))
self.conv_post = weight_norm(Conv2d(ch, 1, (7,1), (1,1), padding=(3,0)))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
x = x.unsqueeze(-1).to(memory_format=torch.channels_last)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
# x = self.ups[i](x.unsqueeze(-1)).squeeze(-1)
x = self.ups[i](x)
xs = 0
for j in range(self.num_kernels):
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
x = x.squeeze(-1)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t, unit = x.shape
assert unit == 1
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, 0, 0, n_pad), "reflect")
t = t + n_pad
# print_once('x pre channels last:', x.is_contiguous(memory_format=torch.channels_last))
x = x.view(b, c, t // self.period, self.period)
# print_once('x post channels last:', x.is_contiguous(memory_format=torch.channels_last))
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
# x = torch.flatten(x, 1, -1)
return x, fmap
def share_params_of(self, dp):
assert len(self.convs) == len(dp.convs)
for c1, c2 in zip(self.convs, dp.convs):
c1.weight = c2.weight
c1.bias = c2.bias
class DiscriminatorPConv1d(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorPConv1d, self).__init__()
self.period = period
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0), dilation=(period, 1))),
])
# self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1, dilation=period))
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0), dilation=(period, 1)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t, unit = x.shape
assert unit == 1
# if t % self.period != 0: # pad first
# n_pad = self.period - (t % self.period)
# x = F.pad(x, (0, n_pad), "reflect")
# t = t + n_pad
# x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
def share_params_of(self, dp):
assert len(self.convs) == len(dp.convs)
for c1, c2 in zip(self.convs, dp.convs):
c1.weight = c2.weight
c1.bias = c2.bias
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, periods, use_conv1d=False, shared=False):
super(MultiPeriodDiscriminator, self).__init__()
print('MPD PERIODS:', periods)
if use_conv1d:
print('Constructing dilated MPD')
layers = [DiscriminatorPConv1d(p) for p in periods]
else:
layers = [DiscriminatorP(p) for p in periods]
if shared:
print('MPD HAS SHARED PARAMS')
for l in layers[1:]:
l.share_params_of(layers[0])
self.discriminators = nn.ModuleList(layers)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False, amp_groups=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
# self.convs = nn.ModuleList([
# norm_f(Conv1d(1, 128, 15, 1, padding=7)),
# norm_f(Conv1d(128, 128, 41, 2, groups=1 if amp_groups else 4, padding=20)), # was: groups=4
# norm_f(Conv1d(128, 256, 41, 2, groups=1 if amp_groups else 16, padding=20)), # was: groups=16
# norm_f(Conv1d(256, 512, 41, 4, groups=1 if amp_groups else 16, padding=20)), # was: groups=16
# norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
# norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
# norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
# ])
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 128, (15,1), (1,1), padding=(7 , 0))),
norm_f(Conv2d(128, 128, (41,1), (2,1), groups=1 if amp_groups else 4, padding=(20, 0))), # was: groups=4
norm_f(Conv2d(128, 256, (41,1), (2,1), groups=1 if amp_groups else 16, padding=(20, 0))), # was: groups=16
norm_f(Conv2d(256, 512, (41,1), (4,1), groups=1 if amp_groups else 16, padding=(20, 0))), # was: groups=16
norm_f(Conv2d(512, 1024, (41,1), (4,1), groups=16 , padding=(20, 0))),
norm_f(Conv2d(1024, 1024, (41,1), (1,1), groups=16 , padding=(20, 0))),
norm_f(Conv2d(1024, 1024, ( 5,1), (1,1), padding=(2 , 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3,1), (1,1), padding=(1,0)))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
# x = x.squeeze(-1)
# x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(torch.nn.Module):
def __init__(self, amp_groups=False):
super(MultiScaleDiscriminator, self).__init__()
if amp_groups:
print('MSD: AMP groups')
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True, amp_groups=amp_groups),
DiscriminatorS(amp_groups=amp_groups),
DiscriminatorS(amp_groups=amp_groups),
])
self.meanpools = nn.ModuleList([
AvgPool2d((4, 1), (2, 1), padding=(1, 0)),
AvgPool2d((4, 1), (2, 1), padding=(1, 0))
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if i != 0:
y = self.meanpools[i-1](y)
y_hat = self.meanpools[i-1](y_hat)
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
def feature_loss(fmap_r, fmap_g, keys=[]):
loss = 0
meta = {}
assert len(keys) == len(fmap_r)
for key, dr, dg in zip(keys, fmap_r, fmap_g):
k = 'loss_gen_feat_' + key
meta[k] = 0
for rl, gl in zip(dr, dg):
# loss += torch.mean(torch.abs(rl - gl))
diff = torch.mean(torch.abs(rl - gl))
loss += diff
meta[k] += diff.item()
return loss*2, meta
def discriminator_loss(disc_real_outputs, disc_generated_outputs, keys=[]):
loss = 0
r_losses = []
g_losses = []
meta = {}
assert len(keys) == len(disc_real_outputs)
for key, dr, dg in zip(keys, disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1-dr)**2)
g_loss = torch.mean(dg**2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
meta['loss_disc_real_' + key] = r_loss.item()
meta['loss_disc_gen_' + key] = g_loss.item()
return loss, r_losses, g_losses, meta
def generator_loss(disc_outputs, keys=[]):
loss = 0
gen_losses = []
meta = {}
assert len(keys) == len(disc_outputs)
for key, dg in zip(keys, disc_outputs):
l = torch.mean((1-dg)**2)
gen_losses.append(l)
loss += l
meta['loss_gen_' + key] = l.item()
return loss, gen_losses, meta