Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d, ConvTranspose2d, AvgPool2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from common.utils import init_weights, get_padding, print_once | |
LRELU_SLOPE = 0.1 | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super(ResBlock1, self).__init__() | |
self.h = h | |
self.convs1 = nn.ModuleList([ | |
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[0], 1), | |
padding=(get_padding(kernel_size, dilation[0]), 0))), | |
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[1], 1), | |
padding=(get_padding(kernel_size, dilation[1]), 0))), | |
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[2], 1), | |
padding=(get_padding(kernel_size, dilation[2]), 0))) | |
]) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList([ | |
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1, | |
padding=(get_padding(kernel_size, 1), 0))), | |
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1, | |
padding=(get_padding(kernel_size, 1), 0))), | |
weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1, | |
padding=(get_padding(kernel_size, 1), 0))) | |
]) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, LRELU_SLOPE) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock2(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): | |
super(ResBlock2, self).__init__() | |
self.h = h | |
self.convs = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))) | |
]) | |
self.convs.apply(init_weights) | |
def forward(self, x): | |
for c in self.convs: | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
class Generator(torch.nn.Module): | |
def __init__(self, h): | |
super(Generator, self).__init__() | |
self.h = h | |
self.num_kernels = len(h.resblock_kernel_sizes) | |
self.num_upsamples = len(h.upsample_rates) | |
self.conv_pre = weight_norm(Conv2d(80, h.upsample_initial_channel, (7,1), (1,1), padding=(3,0))) | |
assert h.resblock == '1', 'Only ResBlock1 currently supported for NHWC' | |
resblock = ResBlock1 if h.resblock == '1' else ResBlock2 | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): | |
self.ups.append(weight_norm( | |
# ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), | |
# k, u, padding=(k-u)//2))) | |
ConvTranspose2d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), | |
(k, 1), (u, 1), padding=((k-u)//2, 0)))) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = h.upsample_initial_channel//(2**(i+1)) | |
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): | |
self.resblocks.append(resblock(h, ch, k, d)) | |
self.conv_post = weight_norm(Conv2d(ch, 1, (7,1), (1,1), padding=(3,0))) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def forward(self, x): | |
x = x.unsqueeze(-1).to(memory_format=torch.channels_last) | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
# x = self.ups[i](x.unsqueeze(-1)).squeeze(-1) | |
x = self.ups[i](x) | |
xs = 0 | |
for j in range(self.num_kernels): | |
xs += self.resblocks[i*self.num_kernels+j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
x = x.squeeze(-1) | |
return x | |
def remove_weight_norm(self): | |
print('Removing weight norm...') | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t, unit = x.shape | |
assert unit == 1 | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, 0, 0, n_pad), "reflect") | |
t = t + n_pad | |
# print_once('x pre channels last:', x.is_contiguous(memory_format=torch.channels_last)) | |
x = x.view(b, c, t // self.period, self.period) | |
# print_once('x post channels last:', x.is_contiguous(memory_format=torch.channels_last)) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
# x = torch.flatten(x, 1, -1) | |
return x, fmap | |
def share_params_of(self, dp): | |
assert len(self.convs) == len(dp.convs) | |
for c1, c2 in zip(self.convs, dp.convs): | |
c1.weight = c2.weight | |
c1.bias = c2.bias | |
class DiscriminatorPConv1d(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorPConv1d, self).__init__() | |
self.period = period | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))), | |
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))), | |
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))), | |
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))), | |
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0), dilation=(period, 1))), | |
]) | |
# self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1, dilation=period)) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0), dilation=(period, 1))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t, unit = x.shape | |
assert unit == 1 | |
# if t % self.period != 0: # pad first | |
# n_pad = self.period - (t % self.period) | |
# x = F.pad(x, (0, n_pad), "reflect") | |
# t = t + n_pad | |
# x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
def share_params_of(self, dp): | |
assert len(self.convs) == len(dp.convs) | |
for c1, c2 in zip(self.convs, dp.convs): | |
c1.weight = c2.weight | |
c1.bias = c2.bias | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, periods, use_conv1d=False, shared=False): | |
super(MultiPeriodDiscriminator, self).__init__() | |
print('MPD PERIODS:', periods) | |
if use_conv1d: | |
print('Constructing dilated MPD') | |
layers = [DiscriminatorPConv1d(p) for p in periods] | |
else: | |
layers = [DiscriminatorP(p) for p in periods] | |
if shared: | |
print('MPD HAS SHARED PARAMS') | |
for l in layers[1:]: | |
l.share_params_of(layers[0]) | |
self.discriminators = nn.ModuleList(layers) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False, amp_groups=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
# self.convs = nn.ModuleList([ | |
# norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
# norm_f(Conv1d(128, 128, 41, 2, groups=1 if amp_groups else 4, padding=20)), # was: groups=4 | |
# norm_f(Conv1d(128, 256, 41, 2, groups=1 if amp_groups else 16, padding=20)), # was: groups=16 | |
# norm_f(Conv1d(256, 512, 41, 4, groups=1 if amp_groups else 16, padding=20)), # was: groups=16 | |
# norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), | |
# norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), | |
# norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
# ]) | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(1, 128, (15,1), (1,1), padding=(7 , 0))), | |
norm_f(Conv2d(128, 128, (41,1), (2,1), groups=1 if amp_groups else 4, padding=(20, 0))), # was: groups=4 | |
norm_f(Conv2d(128, 256, (41,1), (2,1), groups=1 if amp_groups else 16, padding=(20, 0))), # was: groups=16 | |
norm_f(Conv2d(256, 512, (41,1), (4,1), groups=1 if amp_groups else 16, padding=(20, 0))), # was: groups=16 | |
norm_f(Conv2d(512, 1024, (41,1), (4,1), groups=16 , padding=(20, 0))), | |
norm_f(Conv2d(1024, 1024, (41,1), (1,1), groups=16 , padding=(20, 0))), | |
norm_f(Conv2d(1024, 1024, ( 5,1), (1,1), padding=(2 , 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3,1), (1,1), padding=(1,0))) | |
def forward(self, x): | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
# x = x.squeeze(-1) | |
# x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiScaleDiscriminator(torch.nn.Module): | |
def __init__(self, amp_groups=False): | |
super(MultiScaleDiscriminator, self).__init__() | |
if amp_groups: | |
print('MSD: AMP groups') | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorS(use_spectral_norm=True, amp_groups=amp_groups), | |
DiscriminatorS(amp_groups=amp_groups), | |
DiscriminatorS(amp_groups=amp_groups), | |
]) | |
self.meanpools = nn.ModuleList([ | |
AvgPool2d((4, 1), (2, 1), padding=(1, 0)), | |
AvgPool2d((4, 1), (2, 1), padding=(1, 0)) | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
if i != 0: | |
y = self.meanpools[i-1](y) | |
y_hat = self.meanpools[i-1](y_hat) | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
def feature_loss(fmap_r, fmap_g, keys=[]): | |
loss = 0 | |
meta = {} | |
assert len(keys) == len(fmap_r) | |
for key, dr, dg in zip(keys, fmap_r, fmap_g): | |
k = 'loss_gen_feat_' + key | |
meta[k] = 0 | |
for rl, gl in zip(dr, dg): | |
# loss += torch.mean(torch.abs(rl - gl)) | |
diff = torch.mean(torch.abs(rl - gl)) | |
loss += diff | |
meta[k] += diff.item() | |
return loss*2, meta | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs, keys=[]): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
meta = {} | |
assert len(keys) == len(disc_real_outputs) | |
for key, dr, dg in zip(keys, disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1-dr)**2) | |
g_loss = torch.mean(dg**2) | |
loss += (r_loss + g_loss) | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
meta['loss_disc_real_' + key] = r_loss.item() | |
meta['loss_disc_gen_' + key] = g_loss.item() | |
return loss, r_losses, g_losses, meta | |
def generator_loss(disc_outputs, keys=[]): | |
loss = 0 | |
gen_losses = [] | |
meta = {} | |
assert len(keys) == len(disc_outputs) | |
for key, dg in zip(keys, disc_outputs): | |
l = torch.mean((1-dg)**2) | |
gen_losses.append(l) | |
loss += l | |
meta['loss_gen_' + key] = l.item() | |
return loss, gen_losses, meta | |