Spaces:
Sleeping
Sleeping
# ***************************************************************************** | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of the NVIDIA CORPORATION nor the | |
# names of its contributors may be used to endorse or promote products | |
# derived from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
# ***************************************************************************** | |
import torch | |
from torch.autograd import Variable | |
import torch.nn.functional as F | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
class Invertible1x1Conv(torch.nn.Module): | |
""" | |
The layer outputs both the convolution, and the log determinant | |
of its weight matrix. If reverse=True it does convolution with | |
inverse | |
""" | |
def __init__(self, c): | |
super(Invertible1x1Conv, self).__init__() | |
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0, | |
bias=False) | |
# Sample a random orthonormal matrix to initialize weights | |
W = torch.qr(torch.FloatTensor(c, c).normal_())[0] | |
# Ensure determinant is 1.0 not -1.0 | |
if torch.det(W) < 0: | |
W[:, 0] = -1 * W[:, 0] | |
W = W.view(c, c, 1) | |
W = W.contiguous() | |
self.conv.weight.data = W | |
def forward(self, z): | |
# shape | |
batch_size, group_size, n_of_groups = z.size() | |
W = self.conv.weight.squeeze() | |
# Forward computation | |
log_det_W = batch_size * n_of_groups * torch.logdet(W.unsqueeze(0).float()).squeeze() | |
z = self.conv(z) | |
return z, log_det_W | |
def infer(self, z): | |
# shape | |
batch_size, group_size, n_of_groups = z.size() | |
W = self.conv.weight.squeeze() | |
if not hasattr(self, 'W_inverse'): | |
# Reverse computation | |
W_inverse = W.float().inverse() | |
W_inverse = Variable(W_inverse[..., None]) | |
if z.type() == 'torch.cuda.HalfTensor' or z.type() == 'torch.HalfTensor': | |
W_inverse = W_inverse.half() | |
self.W_inverse = W_inverse | |
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) | |
return z | |
class WN(torch.nn.Module): | |
""" | |
This is the WaveNet like layer for the affine coupling. The primary | |
difference from WaveNet is the convolutions need not be causal. There is | |
also no dilation size reset. The dilation only doubles on each layer | |
""" | |
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels, | |
kernel_size): | |
super(WN, self).__init__() | |
assert(kernel_size % 2 == 1) | |
assert(n_channels % 2 == 0) | |
self.n_layers = n_layers | |
self.n_channels = n_channels | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
self.cond_layers = torch.nn.ModuleList() | |
start = torch.nn.Conv1d(n_in_channels, n_channels, 1) | |
start = torch.nn.utils.weight_norm(start, name='weight') | |
self.start = start | |
# Initializing last layer to 0 makes the affine coupling layers | |
# do nothing at first. This helps with training stability | |
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1) | |
end.weight.data.zero_() | |
end.bias.data.zero_() | |
self.end = end | |
for i in range(n_layers): | |
dilation = 2 ** i | |
padding = int((kernel_size * dilation - dilation) / 2) | |
in_layer = torch.nn.Conv1d(n_channels, 2 * n_channels, kernel_size, | |
dilation=dilation, padding=padding) | |
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') | |
self.in_layers.append(in_layer) | |
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1) | |
cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') | |
self.cond_layers.append(cond_layer) | |
# last one is not necessary | |
if i < n_layers - 1: | |
res_skip_channels = 2 * n_channels | |
else: | |
res_skip_channels = n_channels | |
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) | |
res_skip_layer = torch.nn.utils.weight_norm( | |
res_skip_layer, name='weight') | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, forward_input): | |
audio, spect = forward_input | |
audio = self.start(audio) | |
for i in range(self.n_layers): | |
acts = fused_add_tanh_sigmoid_multiply( | |
self.in_layers[i](audio), | |
self.cond_layers[i](spect), | |
torch.IntTensor([self.n_channels])) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.n_layers - 1: | |
audio = res_skip_acts[:, :self.n_channels, :] + audio | |
skip_acts = res_skip_acts[:, self.n_channels:, :] | |
else: | |
skip_acts = res_skip_acts | |
if i == 0: | |
output = skip_acts | |
else: | |
output = skip_acts + output | |
return self.end(output) | |
class WaveGlow(torch.nn.Module): | |
def __init__(self, n_mel_channels, n_flows, n_group, n_early_every, | |
n_early_size, WN_config): | |
super(WaveGlow, self).__init__() | |
self.upsample = torch.nn.ConvTranspose1d(n_mel_channels, | |
n_mel_channels, | |
1024, stride=256) | |
assert(n_group % 2 == 0) | |
self.n_flows = n_flows | |
self.n_group = n_group | |
self.n_early_every = n_early_every | |
self.n_early_size = n_early_size | |
self.WN = torch.nn.ModuleList() | |
self.convinv = torch.nn.ModuleList() | |
n_half = int(n_group / 2) | |
# Set up layers with the right sizes based on how many dimensions | |
# have been output already | |
n_remaining_channels = n_group | |
for k in range(n_flows): | |
if k % self.n_early_every == 0 and k > 0: | |
n_half = n_half - int(self.n_early_size / 2) | |
n_remaining_channels = n_remaining_channels - self.n_early_size | |
self.convinv.append(Invertible1x1Conv(n_remaining_channels)) | |
self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config)) | |
self.n_remaining_channels = n_remaining_channels | |
def forward(self, forward_input): | |
""" | |
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames | |
forward_input[1] = audio: batch x time | |
""" | |
spect, audio = forward_input | |
# Upsample spectrogram to size of audio | |
spect = self.upsample(spect) | |
assert(spect.size(2) >= audio.size(1)) | |
if spect.size(2) > audio.size(1): | |
spect = spect[:, :, :audio.size(1)] | |
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) | |
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) | |
spect = spect.permute(0, 2, 1) | |
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) | |
output_audio = [] | |
log_s_list = [] | |
log_det_W_list = [] | |
for k in range(self.n_flows): | |
if k % self.n_early_every == 0 and k > 0: | |
output_audio.append(audio[:, :self.n_early_size, :]) | |
audio = audio[:, self.n_early_size:, :] | |
audio, log_det_W = self.convinv[k](audio) | |
log_det_W_list.append(log_det_W) | |
n_half = int(audio.size(1) / 2) | |
audio_0 = audio[:, :n_half, :] | |
audio_1 = audio[:, n_half:, :] | |
output = self.WN[k]((audio_0, spect)) | |
log_s = output[:, n_half:, :] | |
b = output[:, :n_half, :] | |
audio_1 = torch.exp(log_s) * audio_1 + b | |
log_s_list.append(log_s) | |
audio = torch.cat([audio_0, audio_1], 1) | |
output_audio.append(audio) | |
return torch.cat(output_audio, 1), log_s_list, log_det_W_list | |
def infer(self, spect, sigma=1.0): | |
spect = self.upsample(spect) | |
# trim conv artifacts. maybe pad spec to kernel multiple | |
time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] | |
spect = spect[:, :, :-time_cutoff] | |
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) | |
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) | |
spect = spect.permute(0, 2, 1) | |
audio = torch.randn(spect.size(0), | |
self.n_remaining_channels, | |
spect.size(2), device=spect.device).to(spect.dtype) | |
audio = torch.autograd.Variable(sigma * audio) | |
for k in reversed(range(self.n_flows)): | |
n_half = int(audio.size(1) / 2) | |
audio_0 = audio[:, :n_half, :] | |
audio_1 = audio[:, n_half:, :] | |
output = self.WN[k]((audio_0, spect)) | |
s = output[:, n_half:, :] | |
b = output[:, :n_half, :] | |
audio_1 = (audio_1 - b) / torch.exp(s) | |
audio = torch.cat([audio_0, audio_1], 1) | |
audio = self.convinv[k].infer(audio) | |
if k % self.n_early_every == 0 and k > 0: | |
z = torch.randn(spect.size(0), self.n_early_size, spect.size( | |
2), device=spect.device).to(spect.dtype) | |
audio = torch.cat((sigma * z, audio), 1) | |
audio = audio.permute( | |
0, 2, 1).contiguous().view( | |
audio.size(0), -1).data | |
return audio | |
def infer_onnx(self, spect, z, sigma=0.9): | |
spect = self.upsample(spect) | |
# trim conv artifacts. maybe pad spec to kernel multiple | |
time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] | |
spect = spect[:, :, :-time_cutoff] | |
length_spect_group = spect.size(2)//8 | |
mel_dim = 80 | |
batch_size = spect.size(0) | |
spect = spect.view((batch_size, mel_dim, length_spect_group, self.n_group)) | |
spect = spect.permute(0, 2, 1, 3) | |
spect = spect.contiguous() | |
spect = spect.view((batch_size, length_spect_group, self.n_group*mel_dim)) | |
spect = spect.permute(0, 2, 1) | |
spect = spect.contiguous() | |
audio = z[:, :self.n_remaining_channels, :] | |
z = z[:, self.n_remaining_channels:self.n_group, :] | |
audio = sigma*audio | |
for k in reversed(range(self.n_flows)): | |
n_half = int(audio.size(1) // 2) | |
audio_0 = audio[:, :n_half, :] | |
audio_1 = audio[:, n_half:(n_half+n_half), :] | |
output = self.WN[k]((audio_0, spect)) | |
s = output[:, n_half:(n_half+n_half), :] | |
b = output[:, :n_half, :] | |
audio_1 = (audio_1 - b) / torch.exp(s) | |
audio = torch.cat([audio_0, audio_1], 1) | |
audio = self.convinv[k].infer(audio) | |
if k % self.n_early_every == 0 and k > 0: | |
audio = torch.cat((z[:, :self.n_early_size, :], audio), 1) | |
z = z[:, self.n_early_size:self.n_group, :] | |
audio = audio.permute(0,2,1).contiguous().view(batch_size, (length_spect_group * self.n_group)) | |
return audio | |
def remove_weightnorm(model): | |
waveglow = model | |
for WN in waveglow.WN: | |
WN.start = torch.nn.utils.remove_weight_norm(WN.start) | |
WN.in_layers = remove(WN.in_layers) | |
WN.cond_layers = remove(WN.cond_layers) | |
WN.res_skip_layers = remove(WN.res_skip_layers) | |
return waveglow | |
def remove(conv_list): | |
new_conv_list = torch.nn.ModuleList() | |
for old_conv in conv_list: | |
old_conv = torch.nn.utils.remove_weight_norm(old_conv) | |
new_conv_list.append(old_conv) | |
return new_conv_list | |