# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data pipeline elements which wrap the data N times A RepeatedDataLoader resets its iterator less frequently. This saves time on multi-GPU platforms and is invisible to the training loop. NOTE: Repeating puts a block of (len(dataset) * repeats) int64s into RAM. Do not use more repeats than necessary (e.g., 10**6 to simulate infinity). """ import itertools from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler class RepeatedDataLoader(DataLoader): def __init__(self, repeats, *args, **kwargs): self.repeats = repeats super().__init__(*args, **kwargs) def __iter__(self): if self._iterator is None or self.repeats_done >= self.repeats: self.repeats_done = 1 return super().__iter__() else: self.repeats_done += 1 return self._iterator class RepeatedDistributedSampler(DistributedSampler): def __init__(self, repeats, *args, **kwargs): self.repeats = repeats assert self.repeats <= 10000, "Too many repeats overload RAM." super().__init__(*args, **kwargs) def __iter__(self): # Draw indices for `self.repeats` epochs forward start_epoch = self.epoch iters = [] for r in range(self.repeats): self.set_epoch(start_epoch + r) iters.append(super().__iter__()) self.set_epoch(start_epoch) return itertools.chain.from_iterable(iters)