# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # init_weights, get_padding, AttrDict import ctypes import glob import os import re import shutil import warnings from collections import defaultdict, OrderedDict from pathlib import Path from typing import Optional import librosa import numpy as np import torch import torch.distributed as dist from scipy.io.wavfile import read def mask_from_lens(lens, max_len: Optional[int] = None): if max_len is None: max_len = lens.max() ids = torch.arange(0, max_len, device=lens.device, dtype=lens.dtype) mask = torch.lt(ids, lens.unsqueeze(1)) return mask def load_wav(full_path, torch_tensor=False): import soundfile # flac data, sampling_rate = soundfile.read(full_path, dtype='int16') if torch_tensor: return torch.FloatTensor(data.astype(np.float32)), sampling_rate else: return data, sampling_rate def load_wav_to_torch(full_path, force_sampling_rate=None): if force_sampling_rate is not None: data, sampling_rate = librosa.load(full_path, sr=force_sampling_rate) else: sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(dataset_path, fnames, has_speakers=False, split="|"): def split_line(root, line): parts = line.strip().split(split) if has_speakers: #ANT: is this ok? paths, non_paths = parts[:2], parts[2:] #paths, non_paths = parts[:-2], parts[-2:] else: paths, non_paths = parts[:-1], parts[-1:] return tuple(str(Path(root, p)) for p in paths) + tuple(non_paths) fpaths_and_text = [] for fname in fnames: with open(fname, encoding='utf-8') as f: fpaths_and_text += [split_line(dataset_path, line) for line in f] return fpaths_and_text def to_gpu(x): x = x.contiguous() return x.cuda(non_blocking=True) if torch.cuda.is_available() else x def l2_promote(): _libcudart = ctypes.CDLL('libcudart.so') # Set device limit on the current device # cudaLimitMaxL2FetchGranularity = 0x05 pValue = ctypes.cast((ctypes.c_int*1)(), ctypes.POINTER(ctypes.c_int)) _libcudart.cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128)) _libcudart.cudaDeviceGetLimit(pValue, ctypes.c_int(0x05)) assert pValue.contents.value == 128 def prepare_tmp(path): if path is None: return p = Path(path) if p.is_dir(): warnings.warn(f'{p} exists. Removing...') shutil.rmtree(p, ignore_errors=True) p.mkdir(parents=False, exist_ok=False) def print_once(*msg): if not dist.is_initialized() or dist.get_rank() == 0: print(*msg) def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class DefaultAttrDict(defaultdict): def __init__(self, *args, **kwargs): super(DefaultAttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def __getattr__(self, item): return self[item] class BenchmarkStats: """ Tracks statistics used for benchmarking. """ def __init__(self): self.num_frames = [] self.losses = [] self.mel_losses = [] self.took = [] def update(self, num_frames, losses, mel_losses, took): self.num_frames.append(num_frames) self.losses.append(losses) self.mel_losses.append(mel_losses) self.took.append(took) def get(self, n_epochs): frames_s = sum(self.num_frames[-n_epochs:]) / sum(self.took[-n_epochs:]) return {'frames/s': frames_s, 'loss': np.mean(self.losses[-n_epochs:]), 'mel_loss': np.mean(self.mel_losses[-n_epochs:]), 'took': np.mean(self.took[-n_epochs:]), 'benchmark_epochs_num': n_epochs} def __len__(self): return len(self.losses) class Checkpointer: def __init__(self, save_dir, keep_milestones=[]): self.save_dir = save_dir self.keep_milestones = keep_milestones find = lambda name: [ (int(re.search("_(\d+).pt", fn).group(1)), fn) for fn in glob.glob(f"{save_dir}/{name}_checkpoint_*.pt")] tracked = sorted(find("FastPitch"), key=lambda t: t[0]) self.tracked = OrderedDict(tracked) def last_checkpoint(self, output): def corrupted(fpath): try: torch.load(fpath, map_location="cpu") return False except: warnings.warn(f"Cannot load {fpath}") return True saved = sorted( glob.glob(f"{output}/FastPitch_checkpoint_*.pt"), key=lambda f: int(re.search("_(\d+).pt", f).group(1))) if len(saved) >= 1 and not corrupted(saved[-1]): return saved[-1] elif len(saved) >= 2: return saved[-2] else: return None def maybe_load(self, model, optimizer, scaler, train_state, args, ema_model=None): assert args.checkpoint_path is None or args.resume is False, ( "Specify a single checkpoint source") fpath = None if args.checkpoint_path is not None: fpath = args.checkpoint_path self.tracked = OrderedDict() # Do not track/delete prev ckpts elif args.resume: fpath = self.last_checkpoint(args.output) if fpath is None: return print_once(f"Loading model and optimizer state from {fpath}") ckpt = torch.load(fpath, map_location="cpu") train_state["epoch"] = ckpt["epoch"] + 1 train_state["total_iter"] = ckpt["iteration"] no_pref = lambda sd: {re.sub("^module.", "", k): v for k, v in sd.items()} unwrap = lambda m: getattr(m, "module", m) unwrap(model).load_state_dict(no_pref(ckpt["state_dict"])) if ema_model is not None: unwrap(ema_model).load_state_dict(no_pref(ckpt["ema_state_dict"])) optimizer.load_state_dict(ckpt["optimizer"]) if "scaler" in ckpt: scaler.load_state_dict(ckpt["scaler"]) else: warnings.warn("AMP scaler state missing from the checkpoint.") def maybe_save(self, args, model, ema_model, optimizer, scaler, epoch, total_iter, config): intermediate = (args.epochs_per_checkpoint > 0 and epoch % args.epochs_per_checkpoint == 0) final = epoch == args.epochs if not intermediate and not final and epoch not in self.keep_milestones: return rank = 0 if dist.is_initialized(): dist.barrier() rank = dist.get_rank() if rank != 0: return unwrap = lambda m: getattr(m, "module", m) ckpt = {"epoch": epoch, "iteration": total_iter, "config": config, "train_setup": args.__dict__, "state_dict": unwrap(model).state_dict(), "optimizer": optimizer.state_dict(), "scaler": scaler.state_dict()} if ema_model is not None: ckpt["ema_state_dict"] = unwrap(ema_model).state_dict() fpath = Path(args.output, f"FastPitch_checkpoint_{epoch}.pt") print(f"Saving model and optimizer state at epoch {epoch} to {fpath}") torch.save(ckpt, fpath) # Remove old checkpoints; keep milestones and the last two self.tracked[epoch] = fpath for epoch in set(list(self.tracked)[:-2]) - set(self.keep_milestones): try: os.remove(self.tracked[epoch]) except: pass del self.tracked[epoch]