# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from numba import jit, prange @jit(nopython=True) def mas(log_attn_map, width=1): # assumes mel x text opt = np.zeros_like(log_attn_map) log_attn_map = log_attn_map.copy() log_attn_map[0, 1:] = -np.inf log_p = np.zeros_like(log_attn_map) log_p[0, :] = log_attn_map[0, :] prev_ind = np.zeros_like(log_attn_map, dtype=np.int64) for i in range(1, log_attn_map.shape[0]): for j in range(log_attn_map.shape[1]): # for each text dim prev_j = np.arange(max(0, j-width), j+1) prev_log = np.array([log_p[i-1, prev_idx] for prev_idx in prev_j]) ind = np.argmax(prev_log) log_p[i, j] = log_attn_map[i, j] + prev_log[ind] prev_ind[i, j] = prev_j[ind] # now backtrack curr_text_idx = log_attn_map.shape[1]-1 for i in range(log_attn_map.shape[0]-1, -1, -1): opt[i, curr_text_idx] = 1 curr_text_idx = prev_ind[i, curr_text_idx] opt[0, curr_text_idx] = 1 return opt @jit(nopython=True) def mas_width1(log_attn_map): """mas with hardcoded width=1""" # assumes mel x text neg_inf = log_attn_map.dtype.type(-np.inf) log_p = log_attn_map.copy() log_p[0, 1:] = neg_inf for i in range(1, log_p.shape[0]): prev_log1 = neg_inf for j in range(log_p.shape[1]): prev_log2 = log_p[i-1, j] log_p[i, j] += max(prev_log1, prev_log2) prev_log1 = prev_log2 # now backtrack opt = np.zeros_like(log_p) one = opt.dtype.type(1) j = log_p.shape[1]-1 for i in range(log_p.shape[0]-1, 0, -1): opt[i, j] = one if log_p[i-1, j-1] >= log_p[i-1, j]: j -= 1 if j == 0: opt[1:i, j] = one break opt[0, j] = one return opt @jit(nopython=True, parallel=True) def b_mas(b_log_attn_map, in_lens, out_lens, width=1): assert width == 1 attn_out = np.zeros_like(b_log_attn_map) for b in prange(b_log_attn_map.shape[0]): out = mas_width1(b_log_attn_map[b, 0, :out_lens[b], :in_lens[b]]) attn_out[b, 0, :out_lens[b], :in_lens[b]] = out return attn_out