File size: 6,135 Bytes
8146713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import atexit
import glob
import re
from itertools import product
from pathlib import Path

import dllogger
import torch
import numpy as np
from dllogger import StdOutBackend, JSONStreamBackend, Verbosity
from torch.utils.tensorboard import SummaryWriter


tb_loggers = {}


class TBLogger:
    """
    xyz_dummies: stretch the screen with empty plots so the legend would
                 always fit for other plots
    """
    def __init__(self, enabled, log_dir, name, interval=1, dummies=True):
        self.enabled = enabled
        self.interval = interval
        self.cache = {}
        if self.enabled:
            self.summary_writer = SummaryWriter(
                log_dir=Path(log_dir, name), flush_secs=120, max_queue=200)
            atexit.register(self.summary_writer.close)
            if dummies:
                for key in ('_', '✕'):
                    self.summary_writer.add_scalar(key, 0.0, 1)

    def log(self, step, data):
        for k, v in data.items():
            self.log_value(step, k, v.item() if type(v) is torch.Tensor else v)

    def log_value(self, step, key, val, stat='mean'):
        if self.enabled:
            if key not in self.cache:
                self.cache[key] = []
            self.cache[key].append(val)
            if len(self.cache[key]) == self.interval:
                agg_val = getattr(np, stat)(self.cache[key])
                self.summary_writer.add_scalar(key, agg_val, step)
                del self.cache[key]

    def log_grads(self, step, model):
        if self.enabled:
            norms = [p.grad.norm().item() for p in model.parameters()
                     if p.grad is not None]
            for stat in ('max', 'min', 'mean'):
                self.log_value(step, f'grad_{stat}', getattr(np, stat)(norms),
                               stat=stat)


def unique_log_fpath(fpath):

    if not Path(fpath).is_file():
        return fpath

    # Avoid overwriting old logs
    saved = [re.search('\.(\d+)$', f) for f in glob.glob(f'{fpath}.*')]
    saved = [0] + [int(m.group(1)) for m in saved if m is not None]
    return f'{fpath}.{max(saved) + 1}'


def stdout_step_format(step):
    if isinstance(step, str):
        return step
    fields = []
    if len(step) > 0:
        fields.append("epoch {:>4}".format(step[0]))
    if len(step) > 1:
        fields.append("iter {:>3}".format(step[1]))
    if len(step) > 2:
        fields[-1] += "/{}".format(step[2])
    return " | ".join(fields)


def stdout_metric_format(metric, metadata, value):
    name = metadata.get("name", metric + " : ")
    unit = metadata.get("unit", None)
    format = f'{{{metadata.get("format", "")}}}'
    fields = [name, format.format(value) if value is not None else value, unit]
    fields = [f for f in fields if f is not None]
    return "| " + " ".join(fields)


def init(log_fpath, log_dir, enabled=True, tb_subsets=[], **tb_kw):

    if enabled:
        backends = [JSONStreamBackend(Verbosity.DEFAULT,
                                      unique_log_fpath(log_fpath)),
                    StdOutBackend(Verbosity.VERBOSE,
                                  step_format=stdout_step_format,
                                  metric_format=stdout_metric_format)]
    else:
        backends = []

    dllogger.init(backends=backends)
    dllogger.metadata("train_lrate", {"name": "lrate", "unit": None, "format": ":>3.2e"})

    for id_, pref in [('train', ''), ('train_avg', 'avg train '),
                      ('val', '  avg val '), ('val_ema', '  EMA val ')]:

        dllogger.metadata(f"{id_}_loss",
                          {"name": f"{pref}loss", "unit": None, "format": ":>5.2f"})
        dllogger.metadata(f"{id_}_mel_loss",
                          {"name": f"{pref}mel loss", "unit": None, "format": ":>5.2f"})

        dllogger.metadata(f"{id_}_kl_loss",
                          {"name": f"{pref}kl loss", "unit": None, "format": ":>5.5f"})
        dllogger.metadata(f"{id_}_kl_weight",
                          {"name": f"{pref}kl weight", "unit": None, "format": ":>5.5f"})

        dllogger.metadata(f"{id_}_frames/s",
                          {"name": None, "unit": "frames/s", "format": ":>10.2f"})
        dllogger.metadata(f"{id_}_took",
                          {"name": "took", "unit": "s", "format": ":>3.2f"})

    global tb_loggers
    tb_loggers = {s: TBLogger(enabled, log_dir, name=s, **tb_kw)
                  for s in tb_subsets}


def init_inference_metadata(batch_size=None):

    modalities = [('latency', 's', ':>10.5f'), ('RTF', 'x', ':>10.2f'),
                  ('frames/s', 'frames/s', ':>10.2f'), ('samples/s', 'samples/s', ':>10.2f'),
                  ('letters/s', 'letters/s', ':>10.2f'), ('tokens/s', 'tokens/s', ':>10.2f')]

    if batch_size is not None:
        modalities.append((f'RTF@{batch_size}', 'x', ':>10.2f'))

    percs = ['', 'avg', '90%', '95%', '99%']
    models = ['', 'fastpitch', 'waveglow', 'hifigan']

    for perc, model, (mod, unit, fmt) in product(percs, models, modalities):
        name = f'{perc} {model} {mod}'.strip().replace('  ', ' ')
        dllogger.metadata(name.replace(' ', '_'),
                          {'name': f'{name: <26}', 'unit': unit, 'format': fmt})


def log(step, tb_total_steps=None, data={}, subset='train'):
    if tb_total_steps is not None:
        tb_loggers[subset].log(tb_total_steps, data)

    if subset != '':
        data = {f'{subset}_{key}': v for key, v in data.items()}
    dllogger.log(step, data=data)


def log_grads_tb(tb_total_steps, grads, tb_subset='train'):
    tb_loggers[tb_subset].log_grads(tb_total_steps, grads)


def parameters(data, verbosity=0, tb_subset=None):
    for k, v in data.items():
        dllogger.log(step="PARAMETER", data={k: v}, verbosity=verbosity)

    if tb_subset is not None and tb_loggers[tb_subset].enabled:
        tb_data = {k: v for k, v in data.items()
                   if type(v) in (str, bool, int, float)}
        tb_loggers[tb_subset].summary_writer.add_hparams(tb_data, {})


def flush():
    dllogger.flush()
    for tbl in tb_loggers.values():
        if tbl.enabled:
            tbl.summary_writer.flush()