Spaces:
Running
Running
File size: 9,864 Bytes
8146713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# MIT License
#
# Copyright (c) 2020 Jungil Kong
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# The following functions/classes were based on code from https://github.com/jik876/hifi-gan:
# init_weights, get_padding, AttrDict
import ctypes
import glob
import os
import re
import shutil
import warnings
from collections import defaultdict, OrderedDict
from pathlib import Path
from typing import Optional
import librosa
import numpy as np
import torch
import torch.distributed as dist
from scipy.io.wavfile import read
def mask_from_lens(lens, max_len: Optional[int] = None):
if max_len is None:
max_len = lens.max()
ids = torch.arange(0, max_len, device=lens.device, dtype=lens.dtype)
mask = torch.lt(ids, lens.unsqueeze(1))
return mask
def load_wav(full_path, torch_tensor=False):
import soundfile # flac
data, sampling_rate = soundfile.read(full_path, dtype='int16')
if torch_tensor:
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
else:
return data, sampling_rate
def load_wav_to_torch(full_path, force_sampling_rate=None):
if force_sampling_rate is not None:
data, sampling_rate = librosa.load(full_path, sr=force_sampling_rate)
else:
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(dataset_path, fnames, has_speakers=False, split="|"):
def split_line(root, line):
parts = line.strip().split(split)
if has_speakers:
#ANT: is this ok?
paths, non_paths = parts[:2], parts[2:]
#paths, non_paths = parts[:-2], parts[-2:]
else:
paths, non_paths = parts[:-1], parts[-1:]
return tuple(str(Path(root, p)) for p in paths) + tuple(non_paths)
fpaths_and_text = []
for fname in fnames:
with open(fname, encoding='utf-8') as f:
fpaths_and_text += [split_line(dataset_path, line) for line in f]
return fpaths_and_text
def to_gpu(x):
x = x.contiguous()
return x.cuda(non_blocking=True) if torch.cuda.is_available() else x
def l2_promote():
_libcudart = ctypes.CDLL('libcudart.so')
# Set device limit on the current device
# cudaLimitMaxL2FetchGranularity = 0x05
pValue = ctypes.cast((ctypes.c_int*1)(), ctypes.POINTER(ctypes.c_int))
_libcudart.cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128))
_libcudart.cudaDeviceGetLimit(pValue, ctypes.c_int(0x05))
assert pValue.contents.value == 128
def prepare_tmp(path):
if path is None:
return
p = Path(path)
if p.is_dir():
warnings.warn(f'{p} exists. Removing...')
shutil.rmtree(p, ignore_errors=True)
p.mkdir(parents=False, exist_ok=False)
def print_once(*msg):
if not dist.is_initialized() or dist.get_rank() == 0:
print(*msg)
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class DefaultAttrDict(defaultdict):
def __init__(self, *args, **kwargs):
super(DefaultAttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def __getattr__(self, item):
return self[item]
class BenchmarkStats:
""" Tracks statistics used for benchmarking. """
def __init__(self):
self.num_frames = []
self.losses = []
self.mel_losses = []
self.took = []
def update(self, num_frames, losses, mel_losses, took):
self.num_frames.append(num_frames)
self.losses.append(losses)
self.mel_losses.append(mel_losses)
self.took.append(took)
def get(self, n_epochs):
frames_s = sum(self.num_frames[-n_epochs:]) / sum(self.took[-n_epochs:])
return {'frames/s': frames_s,
'loss': np.mean(self.losses[-n_epochs:]),
'mel_loss': np.mean(self.mel_losses[-n_epochs:]),
'took': np.mean(self.took[-n_epochs:]),
'benchmark_epochs_num': n_epochs}
def __len__(self):
return len(self.losses)
class Checkpointer:
def __init__(self, save_dir, keep_milestones=[]):
self.save_dir = save_dir
self.keep_milestones = keep_milestones
find = lambda name: [
(int(re.search("_(\d+).pt", fn).group(1)), fn)
for fn in glob.glob(f"{save_dir}/{name}_checkpoint_*.pt")]
tracked = sorted(find("FastPitch"), key=lambda t: t[0])
self.tracked = OrderedDict(tracked)
def last_checkpoint(self, output):
def corrupted(fpath):
try:
torch.load(fpath, map_location="cpu")
return False
except:
warnings.warn(f"Cannot load {fpath}")
return True
saved = sorted(
glob.glob(f"{output}/FastPitch_checkpoint_*.pt"),
key=lambda f: int(re.search("_(\d+).pt", f).group(1)))
if len(saved) >= 1 and not corrupted(saved[-1]):
return saved[-1]
elif len(saved) >= 2:
return saved[-2]
else:
return None
def maybe_load(self, model, optimizer, scaler, train_state, args,
ema_model=None):
assert args.checkpoint_path is None or args.resume is False, (
"Specify a single checkpoint source")
fpath = None
if args.checkpoint_path is not None:
fpath = args.checkpoint_path
self.tracked = OrderedDict() # Do not track/delete prev ckpts
elif args.resume:
fpath = self.last_checkpoint(args.output)
if fpath is None:
return
print_once(f"Loading model and optimizer state from {fpath}")
ckpt = torch.load(fpath, map_location="cpu")
train_state["epoch"] = ckpt["epoch"] + 1
train_state["total_iter"] = ckpt["iteration"]
no_pref = lambda sd: {re.sub("^module.", "", k): v for k, v in sd.items()}
unwrap = lambda m: getattr(m, "module", m)
unwrap(model).load_state_dict(no_pref(ckpt["state_dict"]))
if ema_model is not None:
unwrap(ema_model).load_state_dict(no_pref(ckpt["ema_state_dict"]))
optimizer.load_state_dict(ckpt["optimizer"])
if "scaler" in ckpt:
scaler.load_state_dict(ckpt["scaler"])
else:
warnings.warn("AMP scaler state missing from the checkpoint.")
def maybe_save(self, args, model, ema_model, optimizer, scaler, epoch,
total_iter, config):
intermediate = (args.epochs_per_checkpoint > 0
and epoch % args.epochs_per_checkpoint == 0)
final = epoch == args.epochs
if not intermediate and not final and epoch not in self.keep_milestones:
return
rank = 0
if dist.is_initialized():
dist.barrier()
rank = dist.get_rank()
if rank != 0:
return
unwrap = lambda m: getattr(m, "module", m)
ckpt = {"epoch": epoch,
"iteration": total_iter,
"config": config,
"train_setup": args.__dict__,
"state_dict": unwrap(model).state_dict(),
"optimizer": optimizer.state_dict(),
"scaler": scaler.state_dict()}
if ema_model is not None:
ckpt["ema_state_dict"] = unwrap(ema_model).state_dict()
fpath = Path(args.output, f"FastPitch_checkpoint_{epoch}.pt")
print(f"Saving model and optimizer state at epoch {epoch} to {fpath}")
torch.save(ckpt, fpath)
# Remove old checkpoints; keep milestones and the last two
self.tracked[epoch] = fpath
for epoch in set(list(self.tracked)[:-2]) - set(self.keep_milestones):
try:
os.remove(self.tracked[epoch])
except:
pass
del self.tracked[epoch]
|