File size: 7,769 Bytes
8146713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************

import argparse


def parse_fastpitch_args(parent, add_help=False):
    """
    Parse commandline arguments.
    """
    parser = argparse.ArgumentParser(parents=[parent], add_help=add_help,
                                     allow_abbrev=False)
    io = parser.add_argument_group('io parameters')
    io.add_argument('--n-mel-channels', default=80, type=int,
                    help='Number of bins in mel-spectrograms')
    io.add_argument('--max-seq-len', default=2048, type=int,
                    help='')

    symbols = parser.add_argument_group('symbols parameters')
    symbols.add_argument('--n-symbols', default=148, type=int,
                         help='Number of symbols in dictionary')
    symbols.add_argument('--padding-idx', default=0, type=int,
                         help='Index of padding symbol in dictionary')
    symbols.add_argument('--symbols-embedding-dim', default=384, type=int,
                         help='Input embedding dimension')

    in_fft = parser.add_argument_group('input FFT parameters')
    in_fft.add_argument('--in-fft-n-layers', default=6, type=int,
                        help='Number of FFT blocks')
    in_fft.add_argument('--in-fft-n-heads', default=1, type=int,
                        help='Number of attention heads')
    in_fft.add_argument('--in-fft-d-head', default=64, type=int,
                        help='Dim of attention heads')
    in_fft.add_argument('--in-fft-conv1d-kernel-size', default=3, type=int,
                        help='Conv-1D kernel size')
    in_fft.add_argument('--in-fft-conv1d-filter-size', default=1536, type=int,
                        help='Conv-1D filter size')
    in_fft.add_argument('--in-fft-output-size', default=384, type=int,
                        help='Output dim')
    in_fft.add_argument('--p-in-fft-dropout', default=0.1, type=float,
                        help='Dropout probability')
    in_fft.add_argument('--p-in-fft-dropatt', default=0.1, type=float,
                        help='Multi-head attention dropout')
    in_fft.add_argument('--p-in-fft-dropemb', default=0.0, type=float,
                        help='Dropout added to word+positional embeddings')

    out_fft = parser.add_argument_group('output FFT parameters')
    out_fft.add_argument('--out-fft-n-layers', default=6, type=int,
                         help='Number of FFT blocks')
    out_fft.add_argument('--out-fft-n-heads', default=1, type=int,
                         help='Number of attention heads')
    out_fft.add_argument('--out-fft-d-head', default=64, type=int,
                         help='Dim of attention head')
    out_fft.add_argument('--out-fft-conv1d-kernel-size', default=3, type=int,
                         help='Conv-1D kernel size')
    out_fft.add_argument('--out-fft-conv1d-filter-size', default=1536, type=int,
                         help='Conv-1D filter size')
    out_fft.add_argument('--out-fft-output-size', default=384, type=int,
                         help='Output dim')
    out_fft.add_argument('--p-out-fft-dropout', default=0.1, type=float,
                         help='Dropout probability for out_fft')
    out_fft.add_argument('--p-out-fft-dropatt', default=0.1, type=float,
                         help='Multi-head attention dropout')
    out_fft.add_argument('--p-out-fft-dropemb', default=0.0, type=float,
                         help='Dropout added to word+positional embeddings')

    dur_pred = parser.add_argument_group('duration predictor parameters')
    dur_pred.add_argument('--dur-predictor-kernel-size', default=3, type=int,
                          help='Duration predictor conv-1D kernel size')
    dur_pred.add_argument('--dur-predictor-filter-size', default=256, type=int,
                          help='Duration predictor conv-1D filter size')
    dur_pred.add_argument('--p-dur-predictor-dropout', default=0.1, type=float,
                          help='Dropout probability for duration predictor')
    dur_pred.add_argument('--dur-predictor-n-layers', default=2, type=int,
                          help='Number of conv-1D layers')

    pitch_pred = parser.add_argument_group('pitch predictor parameters')
    pitch_pred.add_argument('--pitch-predictor-kernel-size', default=3, type=int,
                            help='Pitch predictor conv-1D kernel size')
    pitch_pred.add_argument('--pitch-predictor-filter-size', default=256, type=int,
                            help='Pitch predictor conv-1D filter size')
    pitch_pred.add_argument('--p-pitch-predictor-dropout', default=0.1, type=float,
                            help='Pitch probability for pitch predictor')
    pitch_pred.add_argument('--pitch-predictor-n-layers', default=2, type=int,
                            help='Number of conv-1D layers')

    energy_pred = parser.add_argument_group('energy predictor parameters')
    energy_pred.add_argument('--energy-conditioning', action='store_true')
    energy_pred.add_argument('--energy-predictor-kernel-size', default=3, type=int,
                            help='Pitch predictor conv-1D kernel size')
    energy_pred.add_argument('--energy-predictor-filter-size', default=256, type=int,
                            help='Pitch predictor conv-1D filter size')
    energy_pred.add_argument('--p-energy-predictor-dropout', default=0.1, type=float,
                            help='Pitch probability for energy predictor')
    energy_pred.add_argument('--energy-predictor-n-layers', default=2, type=int,
                            help='Number of conv-1D layers')

    cond = parser.add_argument_group('conditioning parameters')
    cond.add_argument('--pitch-embedding-kernel-size', default=3, type=int,
                      help='Pitch embedding conv-1D kernel size')
    cond.add_argument('--energy-embedding-kernel-size', default=3, type=int,
                      help='Pitch embedding conv-1D kernel size')
    cond.add_argument('--speaker-emb-weight', type=float, default=1.0,
                      help='Scale speaker embedding')

    return parser