Spaces:
Sleeping
Sleeping
File size: 17,576 Bytes
8146713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
# *****************************************************************************
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from common import filter_warnings
from common.layers import ConvReLUNorm
from common.utils import mask_from_lens
from fastpitch.alignment import b_mas, mas_width1
from fastpitch.attention import ConvAttention
from fastpitch.transformer import FFTransformer
def regulate_len(durations, enc_out, pace: float = 1.0,
mel_max_len: Optional[int] = None):
"""If target=None, then predicted durations are applied"""
dtype = enc_out.dtype
reps = durations.float() / pace
reps = (reps + 0.5).long()
dec_lens = reps.sum(dim=1)
max_len = dec_lens.max()
reps_cumsum = torch.cumsum(F.pad(reps, (1, 0, 0, 0), value=0.0),
dim=1)[:, None, :]
reps_cumsum = reps_cumsum.to(dtype)
range_ = torch.arange(max_len, device=enc_out.device)[None, :, None]
mult = ((reps_cumsum[:, :, :-1] <= range_) &
(reps_cumsum[:, :, 1:] > range_))
mult = mult.to(dtype)
enc_rep = torch.matmul(mult, enc_out)
if mel_max_len is not None:
enc_rep = enc_rep[:, :mel_max_len]
dec_lens = torch.clamp_max(dec_lens, mel_max_len)
return enc_rep, dec_lens
def average_pitch(pitch, durs):
durs_cums_ends = torch.cumsum(durs, dim=1).long()
durs_cums_starts = F.pad(durs_cums_ends[:, :-1], (1, 0))
pitch_nonzero_cums = F.pad(torch.cumsum(pitch != 0.0, dim=2), (1, 0))
pitch_cums = F.pad(torch.cumsum(pitch, dim=2), (1, 0))
bs, l = durs_cums_ends.size()
n_formants = pitch.size(1)
dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l)
dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l)
pitch_sums = (torch.gather(pitch_cums, 2, dce)
- torch.gather(pitch_cums, 2, dcs)).float()
pitch_nelems = (torch.gather(pitch_nonzero_cums, 2, dce)
- torch.gather(pitch_nonzero_cums, 2, dcs)).float()
pitch_avg = torch.where(pitch_nelems == 0.0, pitch_nelems,
pitch_sums / pitch_nelems)
return pitch_avg
class TemporalPredictor(nn.Module):
"""Predicts a single float per each temporal location"""
def __init__(self, input_size, filter_size, kernel_size, dropout,
n_layers=2, n_predictions=1):
super(TemporalPredictor, self).__init__()
self.layers = nn.Sequential(*[
ConvReLUNorm(input_size if i == 0 else filter_size, filter_size,
kernel_size=kernel_size, dropout=dropout)
for i in range(n_layers)]
)
self.n_predictions = n_predictions
self.fc = nn.Linear(filter_size, self.n_predictions, bias=True)
def forward(self, enc_out, enc_out_mask):
out = enc_out * enc_out_mask
out = self.layers(out.transpose(1, 2)).transpose(1, 2)
out = self.fc(out) * enc_out_mask
return out
class FastPitch(nn.Module):
def __init__(self, n_mel_channels, n_symbols, padding_idx,
symbols_embedding_dim, in_fft_n_layers, in_fft_n_heads,
in_fft_d_head,
in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size,
in_fft_output_size,
p_in_fft_dropout, p_in_fft_dropatt, p_in_fft_dropemb,
out_fft_n_layers, out_fft_n_heads, out_fft_d_head,
out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size,
out_fft_output_size,
p_out_fft_dropout, p_out_fft_dropatt, p_out_fft_dropemb,
dur_predictor_kernel_size, dur_predictor_filter_size,
p_dur_predictor_dropout, dur_predictor_n_layers,
pitch_predictor_kernel_size, pitch_predictor_filter_size,
p_pitch_predictor_dropout, pitch_predictor_n_layers,
pitch_embedding_kernel_size,
energy_conditioning,
energy_predictor_kernel_size, energy_predictor_filter_size,
p_energy_predictor_dropout, energy_predictor_n_layers,
energy_embedding_kernel_size,
n_speakers, speaker_emb_weight, n_languages, pitch_conditioning_formants=1):
super(FastPitch, self).__init__()
self.encoder = FFTransformer(
n_layer=in_fft_n_layers, n_head=in_fft_n_heads,
d_model=symbols_embedding_dim,
d_head=in_fft_d_head,
d_inner=in_fft_conv1d_filter_size,
kernel_size=in_fft_conv1d_kernel_size,
dropout=p_in_fft_dropout,
dropatt=p_in_fft_dropatt,
dropemb=p_in_fft_dropemb,
embed_input=True,
d_embed=symbols_embedding_dim,
n_embed=n_symbols,
padding_idx=padding_idx)
if n_speakers > 1:
print(n_speakers, "### Is the number of speakers in this model ###") ################################################
self.speaker_emb = nn.Embedding(n_speakers, symbols_embedding_dim)
else:
self.speaker_emb = None
self.speaker_emb_weight = speaker_emb_weight
#ANT: added language embedding
if n_languages > 1:
print(n_languages, "### Is the number of languages in this model ###") ################################################
self.language_emb = nn.Embedding(n_languages, symbols_embedding_dim)
else:
self.language_emb = None
self.duration_predictor = TemporalPredictor(
in_fft_output_size,
filter_size=dur_predictor_filter_size,
kernel_size=dur_predictor_kernel_size,
dropout=p_dur_predictor_dropout, n_layers=dur_predictor_n_layers
)
self.decoder = FFTransformer(
n_layer=out_fft_n_layers, n_head=out_fft_n_heads,
d_model=symbols_embedding_dim,
d_head=out_fft_d_head,
d_inner=out_fft_conv1d_filter_size,
kernel_size=out_fft_conv1d_kernel_size,
dropout=p_out_fft_dropout,
dropatt=p_out_fft_dropatt,
dropemb=p_out_fft_dropemb,
embed_input=False,
d_embed=symbols_embedding_dim
)
self.pitch_predictor = TemporalPredictor(
in_fft_output_size,
filter_size=pitch_predictor_filter_size,
kernel_size=pitch_predictor_kernel_size,
dropout=p_pitch_predictor_dropout, n_layers=pitch_predictor_n_layers,
n_predictions=pitch_conditioning_formants
)
self.pitch_emb = nn.Conv1d(
pitch_conditioning_formants, symbols_embedding_dim,
kernel_size=pitch_embedding_kernel_size,
padding=int((pitch_embedding_kernel_size - 1) / 2))
# Store values precomputed for training data within the model
self.register_buffer('pitch_mean', torch.zeros(1))
self.register_buffer('pitch_std', torch.zeros(1))
self.energy_conditioning = energy_conditioning
if energy_conditioning:
self.energy_predictor = TemporalPredictor(
in_fft_output_size,
filter_size=energy_predictor_filter_size,
kernel_size=energy_predictor_kernel_size,
dropout=p_energy_predictor_dropout,
n_layers=energy_predictor_n_layers,
n_predictions=1
)
self.energy_emb = nn.Conv1d(
1, symbols_embedding_dim,
kernel_size=energy_embedding_kernel_size,
padding=int((energy_embedding_kernel_size - 1) / 2))
self.proj = nn.Linear(out_fft_output_size, n_mel_channels, bias=True)
self.attention = ConvAttention(
n_mel_channels, 0, symbols_embedding_dim,
use_query_proj=True, align_query_enc_type='3xconv')
def binarize_attention(self, attn, in_lens, out_lens):
"""For training purposes only. Binarizes attention with MAS.
These will no longer recieve a gradient.
Args:
attn: B x 1 x max_mel_len x max_text_len
"""
b_size = attn.shape[0]
with torch.no_grad():
attn_out_cpu = np.zeros(attn.data.shape, dtype=np.float32)
log_attn_cpu = torch.log(attn.data).to(device='cpu', dtype=torch.float32)
log_attn_cpu = log_attn_cpu.numpy()
out_lens_cpu = out_lens.cpu()
in_lens_cpu = in_lens.cpu()
for ind in range(b_size):
hard_attn = mas_width1(
log_attn_cpu[ind, 0, :out_lens_cpu[ind], :in_lens_cpu[ind]])
attn_out_cpu[ind, 0, :out_lens_cpu[ind], :in_lens_cpu[ind]] = hard_attn
attn_out = torch.tensor(
attn_out_cpu, device=attn.get_device(), dtype=attn.dtype)
return attn_out
def binarize_attention_parallel(self, attn, in_lens, out_lens):
"""For training purposes only. Binarizes attention with MAS.
These will no longer recieve a gradient.
Args:
attn: B x 1 x max_mel_len x max_text_len
"""
with torch.no_grad():
log_attn_cpu = torch.log(attn.data).cpu().numpy()
attn_out = b_mas(log_attn_cpu, in_lens.cpu().numpy(),
out_lens.cpu().numpy(), width=1)
return torch.from_numpy(attn_out).to(attn.get_device())
def forward(self, inputs, use_gt_pitch=True, pace=1.0, max_duration=75):
#ANT: added language
(inputs, input_lens, mel_tgt, mel_lens, pitch_dense, energy_dense,
speaker, language, attn_prior, audiopaths) = inputs
text_max_len = inputs.size(1)
mel_max_len = mel_tgt.size(2)
# Calculate speaker embedding
conditionings = []
if self.speaker_emb is None:
spk_emb = 0
else:
spk_emb = self.speaker_emb(speaker).unsqueeze(1)
spk_emb.mul_(self.speaker_emb_weight)
conditionings.append(spk_emb)
# ANT: added language
if self.language_emb is None:
language_emb = 0
else:
language_emb = self.language_emb(language).unsqueeze(1)
conditionings.append(language_emb)
# Input FFT
#enc_out, enc_mask = self.encoder(inputs, conditioning=[])
enc_out, enc_mask = self.encoder(inputs, conditioning=conditionings)
# Predict durations
log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1)
dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, max_duration)
# Predict pitch
pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1)
# Alignment
text_emb = self.encoder.word_emb(inputs)
# make sure to do the alignments before folding
attn_mask = mask_from_lens(input_lens, max_len=text_max_len)
attn_mask = attn_mask[..., None] == 0
# attn_mask should be 1 for unused timesteps in the text_enc_w_spkvec tensor
attn_soft, attn_logprob = self.attention(
mel_tgt, text_emb.permute(0, 2, 1), mel_lens, attn_mask,
key_lens=input_lens, keys_encoded=enc_out, attn_prior=attn_prior)
attn_hard = self.binarize_attention(attn_soft, input_lens, mel_lens)
# Viterbi --> durations
attn_hard_dur = attn_hard.sum(2)[:, 0, :]
dur_tgt = attn_hard_dur
if not torch.all(torch.eq(dur_tgt.sum(dim=1), mel_lens)):
print(audiopaths,input_lens,dur_tgt.sum(dim=1), mel_lens)
assert torch.all(torch.eq(dur_tgt.sum(dim=1), mel_lens))
# Average pitch over characters
pitch_tgt = average_pitch(pitch_dense, dur_tgt)
if use_gt_pitch and pitch_tgt is not None:
pitch_emb = self.pitch_emb(pitch_tgt)
else:
pitch_emb = self.pitch_emb(pitch_pred)
enc_out = enc_out + pitch_emb.transpose(1, 2)
# Predict energy
if self.energy_conditioning:
energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1)
# Average energy over characters
energy_tgt = average_pitch(energy_dense.unsqueeze(1), dur_tgt)
energy_tgt = torch.log(1.0 + energy_tgt)
energy_emb = self.energy_emb(energy_tgt)
energy_tgt = energy_tgt.squeeze(1)
enc_out = enc_out + energy_emb.transpose(1, 2)
else:
energy_pred = None
energy_tgt = None
len_regulated, dec_lens = regulate_len(
dur_tgt, enc_out, pace, mel_max_len)
# Output FFT
dec_out, dec_mask = self.decoder(len_regulated, dec_lens)
mel_out = self.proj(dec_out)
return (mel_out, dec_mask, dur_pred, log_dur_pred, pitch_pred,
pitch_tgt, energy_pred, energy_tgt, attn_soft, attn_hard,
attn_hard_dur, attn_logprob)
def infer(self, inputs, pace=1.0, dur_tgt=None, pitch_tgt=None,
energy_tgt=None, pitch_transform=None, max_duration=75,
speaker=0, language=0, speaker_weight=1.0, language_weight=1.0):
if self.speaker_emb is None:
spk_emb = 0
else:
print("using speaker embeddings")
speaker = (torch.ones(inputs.size(0)).long().to(inputs.device)
* speaker)
spk_emb = self.speaker_emb(speaker).unsqueeze(1)
print("spkr weight", speaker_weight)
spk_emb = spk_emb *speaker_weight
# ANT: added language
if self.language_emb is None:
language_emb = 0
else:
print("using language embeddings")
language = (torch.ones(inputs.size(0)).long().to(inputs.device)
* language)
language_emb = self.language_emb(language).unsqueeze(1)
language_emb = language_emb * language_weight
# Input FFT
enc_out, enc_mask = self.encoder(inputs, conditioning=[spk_emb, language_emb])
# Predict durations
log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1)
dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, max_duration)
# Pitch over chars
pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1)
if pitch_transform is not None:
if self.pitch_std[0] == 0.0:
# XXX LJSpeech-1.1 defaults
mean, std = 218.14, 67.24
else:
mean, std = self.pitch_mean[0], self.pitch_std[0]
pitch_pred = pitch_transform(pitch_pred, enc_mask.sum(dim=(1,2)),
mean, std)
if pitch_tgt is None:
pitch_emb = self.pitch_emb(pitch_pred).transpose(1, 2)
else:
pitch_emb = self.pitch_emb(pitch_tgt).transpose(1, 2)
enc_out = enc_out + pitch_emb
# Predict energy
if self.energy_conditioning:
if energy_tgt is None:
energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1)
energy_emb = self.energy_emb(energy_pred.unsqueeze(1)).transpose(1, 2)
else:
energy_emb = self.energy_emb(energy_tgt).transpose(1, 2)
enc_out = enc_out + energy_emb
else:
energy_pred = None
len_regulated, dec_lens = regulate_len(
dur_pred if dur_tgt is None else dur_tgt,
enc_out, pace, mel_max_len=None)
dec_out, dec_mask = self.decoder(len_regulated, dec_lens)
mel_out = self.proj(dec_out)
# mel_lens = dec_mask.squeeze(2).sum(axis=1).long()
mel_out = mel_out.permute(0, 2, 1) # For inference.py
return mel_out, dec_lens, dur_pred, pitch_pred, energy_pred
|