File size: 13,386 Bytes
8146713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
from torch.autograd import Variable
import torch.nn.functional as F


@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
    n_channels_int = n_channels[0]
    in_act = input_a + input_b
    t_act = torch.tanh(in_act[:, :n_channels_int, :])
    s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
    acts = t_act * s_act
    return acts


class Invertible1x1Conv(torch.nn.Module):
    """
    The layer outputs both the convolution, and the log determinant
    of its weight matrix.  If reverse=True it does convolution with
    inverse
    """

    def __init__(self, c):
        super(Invertible1x1Conv, self).__init__()
        self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
                                    bias=False)

        # Sample a random orthonormal matrix to initialize weights
        W = torch.qr(torch.FloatTensor(c, c).normal_())[0]

        # Ensure determinant is 1.0 not -1.0
        if torch.det(W) < 0:
            W[:, 0] = -1 * W[:, 0]
        W = W.view(c, c, 1)
        W = W.contiguous()
        self.conv.weight.data = W

    def forward(self, z):
        # shape
        batch_size, group_size, n_of_groups = z.size()

        W = self.conv.weight.squeeze()

        # Forward computation
        log_det_W = batch_size * n_of_groups * torch.logdet(W.unsqueeze(0).float()).squeeze()
        z = self.conv(z)
        return z, log_det_W


    def infer(self, z):
        # shape
        batch_size, group_size, n_of_groups = z.size()

        W = self.conv.weight.squeeze()

        if not hasattr(self, 'W_inverse'):
            # Reverse computation
            W_inverse = W.float().inverse()
            W_inverse = Variable(W_inverse[..., None])
            if z.type() == 'torch.cuda.HalfTensor' or z.type() == 'torch.HalfTensor':
                W_inverse = W_inverse.half()
            self.W_inverse = W_inverse
        z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
        return z


class WN(torch.nn.Module):
    """
    This is the WaveNet like layer for the affine coupling.  The primary
    difference from WaveNet is the convolutions need not be causal.  There is
    also no dilation size reset.  The dilation only doubles on each layer
    """

    def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
                 kernel_size):
        super(WN, self).__init__()
        assert(kernel_size % 2 == 1)
        assert(n_channels % 2 == 0)
        self.n_layers = n_layers
        self.n_channels = n_channels
        self.in_layers = torch.nn.ModuleList()
        self.res_skip_layers = torch.nn.ModuleList()
        self.cond_layers = torch.nn.ModuleList()

        start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
        start = torch.nn.utils.weight_norm(start, name='weight')
        self.start = start

        # Initializing last layer to 0 makes the affine coupling layers
        # do nothing at first.  This helps with training stability
        end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
        end.weight.data.zero_()
        end.bias.data.zero_()
        self.end = end

        for i in range(n_layers):
            dilation = 2 ** i
            padding = int((kernel_size * dilation - dilation) / 2)
            in_layer = torch.nn.Conv1d(n_channels, 2 * n_channels, kernel_size,
                                       dilation=dilation, padding=padding)
            in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
            self.in_layers.append(in_layer)

            cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
            cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
            self.cond_layers.append(cond_layer)

            # last one is not necessary
            if i < n_layers - 1:
                res_skip_channels = 2 * n_channels
            else:
                res_skip_channels = n_channels
            res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
            res_skip_layer = torch.nn.utils.weight_norm(
                res_skip_layer, name='weight')
            self.res_skip_layers.append(res_skip_layer)

    def forward(self, forward_input):
        audio, spect = forward_input
        audio = self.start(audio)

        for i in range(self.n_layers):
            acts = fused_add_tanh_sigmoid_multiply(
                self.in_layers[i](audio),
                self.cond_layers[i](spect),
                torch.IntTensor([self.n_channels]))

            res_skip_acts = self.res_skip_layers[i](acts)
            if i < self.n_layers - 1:
                audio = res_skip_acts[:, :self.n_channels, :] + audio
                skip_acts = res_skip_acts[:, self.n_channels:, :]
            else:
                skip_acts = res_skip_acts

            if i == 0:
                output = skip_acts
            else:
                output = skip_acts + output
        return self.end(output)


class WaveGlow(torch.nn.Module):
    def __init__(self, n_mel_channels, n_flows, n_group, n_early_every,
                 n_early_size, WN_config):
        super(WaveGlow, self).__init__()

        self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
                                                 n_mel_channels,
                                                 1024, stride=256)
        assert(n_group % 2 == 0)
        self.n_flows = n_flows
        self.n_group = n_group
        self.n_early_every = n_early_every
        self.n_early_size = n_early_size
        self.WN = torch.nn.ModuleList()
        self.convinv = torch.nn.ModuleList()

        n_half = int(n_group / 2)

        # Set up layers with the right sizes based on how many dimensions
        # have been output already
        n_remaining_channels = n_group
        for k in range(n_flows):
            if k % self.n_early_every == 0 and k > 0:
                n_half = n_half - int(self.n_early_size / 2)
                n_remaining_channels = n_remaining_channels - self.n_early_size
            self.convinv.append(Invertible1x1Conv(n_remaining_channels))
            self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config))
        self.n_remaining_channels = n_remaining_channels

    def forward(self, forward_input):
        """
        forward_input[0] = mel_spectrogram:  batch x n_mel_channels x frames
        forward_input[1] = audio: batch x time
        """
        spect, audio = forward_input

        #  Upsample spectrogram to size of audio
        spect = self.upsample(spect)
        assert(spect.size(2) >= audio.size(1))
        if spect.size(2) > audio.size(1):
            spect = spect[:, :, :audio.size(1)]

        spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
        spect = spect.contiguous().view(spect.size(0), spect.size(1), -1)
        spect = spect.permute(0, 2, 1)

        audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
        output_audio = []
        log_s_list = []
        log_det_W_list = []

        for k in range(self.n_flows):
            if k % self.n_early_every == 0 and k > 0:
                output_audio.append(audio[:, :self.n_early_size, :])
                audio = audio[:, self.n_early_size:, :]

            audio, log_det_W = self.convinv[k](audio)
            log_det_W_list.append(log_det_W)

            n_half = int(audio.size(1) / 2)
            audio_0 = audio[:, :n_half, :]
            audio_1 = audio[:, n_half:, :]

            output = self.WN[k]((audio_0, spect))
            log_s = output[:, n_half:, :]
            b = output[:, :n_half, :]
            audio_1 = torch.exp(log_s) * audio_1 + b
            log_s_list.append(log_s)

            audio = torch.cat([audio_0, audio_1], 1)

        output_audio.append(audio)
        return torch.cat(output_audio, 1), log_s_list, log_det_W_list

    def infer(self, spect, sigma=1.0):

        spect = self.upsample(spect)
        # trim conv artifacts. maybe pad spec to kernel multiple
        time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0]
        spect = spect[:, :, :-time_cutoff]

        spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
        spect = spect.contiguous().view(spect.size(0), spect.size(1), -1)
        spect = spect.permute(0, 2, 1)

        audio = torch.randn(spect.size(0),
                            self.n_remaining_channels,
                            spect.size(2), device=spect.device).to(spect.dtype)

        audio = torch.autograd.Variable(sigma * audio)

        for k in reversed(range(self.n_flows)):
            n_half = int(audio.size(1) / 2)
            audio_0 = audio[:, :n_half, :]
            audio_1 = audio[:, n_half:, :]

            output = self.WN[k]((audio_0, spect))
            s = output[:, n_half:, :]
            b = output[:, :n_half, :]
            audio_1 = (audio_1 - b) / torch.exp(s)
            audio = torch.cat([audio_0, audio_1], 1)

            audio = self.convinv[k].infer(audio)

            if k % self.n_early_every == 0 and k > 0:
                z = torch.randn(spect.size(0), self.n_early_size, spect.size(
                    2), device=spect.device).to(spect.dtype)
                audio = torch.cat((sigma * z, audio), 1)

        audio = audio.permute(
            0, 2, 1).contiguous().view(
            audio.size(0), -1).data
        return audio


    def infer_onnx(self, spect, z, sigma=0.9):

        spect = self.upsample(spect)
        # trim conv artifacts. maybe pad spec to kernel multiple
        time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0]
        spect = spect[:, :, :-time_cutoff]

        length_spect_group = spect.size(2)//8
        mel_dim = 80
        batch_size = spect.size(0)

        spect = spect.view((batch_size, mel_dim, length_spect_group, self.n_group))
        spect = spect.permute(0, 2, 1, 3)
        spect = spect.contiguous()
        spect = spect.view((batch_size, length_spect_group, self.n_group*mel_dim))
        spect = spect.permute(0, 2, 1)
        spect = spect.contiguous()

        audio = z[:, :self.n_remaining_channels, :]
        z = z[:, self.n_remaining_channels:self.n_group, :]
        audio = sigma*audio

        for k in reversed(range(self.n_flows)):
            n_half = int(audio.size(1) // 2)
            audio_0 = audio[:, :n_half, :]
            audio_1 = audio[:, n_half:(n_half+n_half), :]

            output = self.WN[k]((audio_0, spect))
            s = output[:, n_half:(n_half+n_half), :]
            b = output[:, :n_half, :]
            audio_1 = (audio_1 - b) / torch.exp(s)
            audio = torch.cat([audio_0, audio_1], 1)
            audio = self.convinv[k].infer(audio)

            if k % self.n_early_every == 0 and k > 0:
                audio = torch.cat((z[:, :self.n_early_size, :], audio), 1)
                z = z[:, self.n_early_size:self.n_group, :]

        audio = audio.permute(0,2,1).contiguous().view(batch_size, (length_spect_group * self.n_group))

        return audio


    @staticmethod
    def remove_weightnorm(model):
        waveglow = model
        for WN in waveglow.WN:
            WN.start = torch.nn.utils.remove_weight_norm(WN.start)
            WN.in_layers = remove(WN.in_layers)
            WN.cond_layers = remove(WN.cond_layers)
            WN.res_skip_layers = remove(WN.res_skip_layers)
        return waveglow


def remove(conv_list):
    new_conv_list = torch.nn.ModuleList()
    for old_conv in conv_list:
        old_conv = torch.nn.utils.remove_weight_norm(old_conv)
        new_conv_list.append(old_conv)
    return new_conv_list