Spaces:
Running
Running
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Data pipeline elements which wrap the data N times | |
A RepeatedDataLoader resets its iterator less frequently. This saves time | |
on multi-GPU platforms and is invisible to the training loop. | |
NOTE: Repeating puts a block of (len(dataset) * repeats) int64s into RAM. | |
Do not use more repeats than necessary (e.g., 10**6 to simulate infinity). | |
""" | |
import itertools | |
from torch.utils.data import DataLoader | |
from torch.utils.data.distributed import DistributedSampler | |
class RepeatedDataLoader(DataLoader): | |
def __init__(self, repeats, *args, **kwargs): | |
self.repeats = repeats | |
super().__init__(*args, **kwargs) | |
def __iter__(self): | |
if self._iterator is None or self.repeats_done >= self.repeats: | |
self.repeats_done = 1 | |
return super().__iter__() | |
else: | |
self.repeats_done += 1 | |
return self._iterator | |
class RepeatedDistributedSampler(DistributedSampler): | |
def __init__(self, repeats, *args, **kwargs): | |
self.repeats = repeats | |
assert self.repeats <= 10000, "Too many repeats overload RAM." | |
super().__init__(*args, **kwargs) | |
def __iter__(self): | |
# Draw indices for `self.repeats` epochs forward | |
start_epoch = self.epoch | |
iters = [] | |
for r in range(self.repeats): | |
self.set_epoch(start_epoch + r) | |
iters.append(super().__iter__()) | |
self.set_epoch(start_epoch) | |
return itertools.chain.from_iterable(iters) | |