Spaces:
Sleeping
Sleeping
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# MIT License | |
# | |
# Copyright (c) 2020 Jungil Kong | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# The following functions/classes were based on code from https://github.com/jik876/hifi-gan: | |
# mel_spectrogram, MelDataset | |
import math | |
import os | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.data | |
from librosa.filters import mel as librosa_mel_fn | |
from librosa.util import normalize | |
from numpy import random | |
from torch.utils.data import DataLoader | |
from torch.utils.data.distributed import DistributedSampler | |
from common.audio_processing import dynamic_range_compression | |
from common.utils import load_filepaths_and_text, load_wav | |
MAX_WAV_VALUE = 32768.0 | |
mel_basis = {} | |
hann_window = {} | |
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, | |
fmin, fmax, center=False): | |
if torch.min(y) < -1.: | |
print('min value is ', torch.min(y)) | |
if torch.max(y) > 1.: | |
print('max value is ', torch.max(y)) | |
global mel_basis, hann_window | |
fmax_key = f'{fmax}_{y.device}' | |
if fmax_key not in mel_basis: | |
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) | |
mel_basis[fmax_key] = torch.from_numpy(mel).float().to(y.device) | |
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) | |
pad = int((n_fft-hop_size)/2) | |
y = F.pad(y.unsqueeze(1), (pad, pad), mode='reflect') | |
y = y.squeeze(1) | |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, | |
window=hann_window[str(y.device)], center=center, | |
pad_mode='reflect', normalized=False, onesided=True, | |
return_complex=True) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) | |
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) | |
spec = dynamic_range_compression(spec) # spectral normalize | |
return spec | |
class MelDataset(torch.utils.data.Dataset): | |
def __init__(self, training_files, segment_size, n_fft, num_mels, | |
hop_size, win_size, sampling_rate, fmin, fmax, split=True, | |
device=None, fmax_loss=None, fine_tuning=False, | |
base_mels_path=None, repeat=1, deterministic=False, | |
max_wav_value=MAX_WAV_VALUE): | |
self.audio_files = training_files | |
self.segment_size = segment_size | |
self.sampling_rate = sampling_rate | |
self.split = split | |
self.n_fft = n_fft | |
self.num_mels = num_mels | |
self.hop_size = hop_size | |
self.win_size = win_size | |
self.fmin = fmin | |
self.fmax = fmax | |
self.fmax_loss = fmax_loss | |
self.max_wav_value = max_wav_value | |
self.fine_tuning = fine_tuning | |
self.base_mels_path = base_mels_path | |
self.repeat = repeat | |
self.deterministic = deterministic | |
self.rng = random.default_rng() | |
def __getitem__(self, index): | |
if index >= len(self): | |
raise IndexError('Dataset index out of range') | |
rng = random.default_rng(index) if self.deterministic else self.rng | |
index = index % len(self.audio_files) # collapse **after** setting seed | |
filename = self.audio_files[index] | |
audio, sampling_rate = load_wav(filename) | |
audio = audio / self.max_wav_value | |
if not self.fine_tuning: | |
audio = normalize(audio) * 0.95 | |
if sampling_rate != self.sampling_rate: | |
raise ValueError("{} SR doesn't match target {} SR".format( | |
sampling_rate, self.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio = audio.unsqueeze(0) | |
if not self.fine_tuning: | |
if self.split: | |
if audio.size(1) >= self.segment_size: | |
max_audio_start = audio.size(1) - self.segment_size | |
audio_start = rng.integers(0, max_audio_start) | |
audio = audio[:, audio_start:audio_start+self.segment_size] | |
else: | |
audio = F.pad(audio, (0, self.segment_size - audio.size(1))) | |
mel = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, | |
self.win_size, self.fmin, self.fmax, | |
center=False) | |
else: | |
mel = np.load( | |
os.path.join(self.base_mels_path, | |
os.path.splitext(os.path.split(filename)[-1])[0] + '.npy')) | |
mel = torch.from_numpy(mel).float() | |
if len(mel.shape) < 3: | |
mel = mel.unsqueeze(0) | |
if self.split: | |
frames_per_seg = math.ceil(self.segment_size / self.hop_size) | |
if audio.size(1) >= self.segment_size: | |
mel_start = rng.integers(0, mel.size(2) - frames_per_seg - 1) | |
mel = mel[:, :, mel_start:mel_start + frames_per_seg] | |
a = mel_start * self.hop_size | |
b = (mel_start + frames_per_seg) * self.hop_size | |
audio = audio[:, a:b] | |
else: | |
mel = F.pad(mel, (0, frames_per_seg - mel.size(2))) | |
audio = F.pad(audio, (0, self.segment_size - audio.size(1))) | |
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, | |
self.win_size, self.fmin, self.fmax_loss, | |
center=False) | |
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) | |
def __len__(self): | |
return len(self.audio_files) * self.repeat | |
def get_data_loader(args, distributed_run, train=True, batch_size=None, | |
val_kwargs=None): | |
filelists = args.training_files if train else args.validation_files | |
files = load_filepaths_and_text(args.dataset_path, filelists) | |
files = list(zip(*files))[0] | |
dataset_kw = { | |
'segment_size': args.segment_size, | |
'n_fft': args.filter_length, | |
'num_mels': args.num_mels, | |
'hop_size': args.hop_length, | |
'win_size': args.win_length, | |
'sampling_rate': args.sampling_rate, | |
'fmin': args.mel_fmin, | |
'fmax': args.mel_fmax, | |
'fmax_loss': args.mel_fmax_loss, | |
'max_wav_value': args.max_wav_value, | |
'fine_tuning': args.fine_tuning, | |
'base_mels_path': args.input_mels_dir, | |
'deterministic': not train | |
} | |
if train: | |
dataset = MelDataset(files, **dataset_kw) | |
sampler = DistributedSampler(dataset) if distributed_run else None | |
else: | |
dataset_kw.update(val_kwargs or {}) | |
dataset = MelDataset(files, **dataset_kw) | |
sampler = (DistributedSampler(dataset, shuffle=False) | |
if distributed_run else None) | |
loader = DataLoader(dataset, | |
# NOTE On DGX-1 and DGX A100 =1 is optimal | |
num_workers=args.num_workers if train else 1, | |
shuffle=(train and not distributed_run), | |
sampler=sampler, | |
batch_size=batch_size or args.batch_size, | |
pin_memory=True, | |
persistent_workers=True, | |
drop_last=train) | |
return loader | |