Spaces:
Sleeping
Sleeping
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# MIT License | |
# | |
# Copyright (c) 2020 Jungil Kong | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# The following functions/classes were based on code from https://github.com/jik876/hifi-gan: | |
# ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator, | |
# MultiPeriodDiscriminator, feature_loss, discriminator_loss, generator_loss, | |
# init_weights, get_padding | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d | |
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm | |
from common.stft import STFT | |
from common.utils import AttrDict, init_weights, get_padding | |
LRELU_SLOPE = 0.1 | |
class NoAMPConv1d(Conv1d): | |
def __init__(self, *args, no_amp=False, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.no_amp = no_amp | |
def _cast(self, x, dtype): | |
if isinstance(x, (list, tuple)): | |
return [self._cast(t, dtype) for t in x] | |
else: | |
return x.to(dtype) | |
def forward(self, *args): | |
if not self.no_amp: | |
return super().forward(*args) | |
with torch.cuda.amp.autocast(enabled=False): | |
return self._cast( | |
super().forward(*self._cast(args, torch.float)), args[0].dtype) | |
class ResBlock1(nn.Module): | |
__constants__ = ['lrelu_slope'] | |
def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super().__init__() | |
self.conf = conf | |
self.lrelu_slope = LRELU_SLOPE | |
ch, ks = channels, kernel_size | |
self.convs1 = nn.Sequential(*[ | |
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[0]), dilation[0])), | |
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[1]), dilation[1])), | |
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[2]), dilation[2])), | |
]) | |
self.convs2 = nn.Sequential(*[ | |
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), | |
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), | |
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), | |
]) | |
self.convs1.apply(init_weights) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, self.lrelu_slope) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, self.lrelu_slope) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock2(nn.Module): | |
__constants__ = ['lrelu_slope'] | |
def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3)): | |
super().__init__() | |
self.conf = conf | |
ch, ks = channels, kernel_size | |
self.convs = nn.ModuleList([ | |
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[0]), dilation[0])), | |
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[1]), dilation[1])), | |
]) | |
self.convs.apply(init_weights) | |
def forward(self, x): | |
for c in self.convs: | |
xt = F.leaky_relu(x, self.lrelu_slope) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
class Generator(nn.Module): | |
__constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples'] | |
def __init__(self, conf): | |
super().__init__() | |
conf = AttrDict(conf) | |
self.conf = conf | |
self.num_kernels = len(conf.resblock_kernel_sizes) | |
self.num_upsamples = len(conf.upsample_rates) | |
self.conv_pre = weight_norm( | |
Conv1d(80, conf.upsample_initial_channel, 7, 1, padding=3)) | |
self.lrelu_slope = LRELU_SLOPE | |
resblock = ResBlock1 if conf.resblock == '1' else ResBlock2 | |
self.ups = [] | |
for i, (u, k) in enumerate(zip(conf.upsample_rates, | |
conf.upsample_kernel_sizes)): | |
self.ups.append(weight_norm( | |
ConvTranspose1d(conf.upsample_initial_channel // (2 ** i), | |
conf.upsample_initial_channel // (2 ** (i + 1)), | |
k, u, padding=(k-u)//2))) | |
self.ups = nn.Sequential(*self.ups) | |
self.resblocks = [] | |
for i in range(len(self.ups)): | |
resblock_list = [] | |
ch = conf.upsample_initial_channel // (2 ** (i + 1)) | |
for j, (k, d) in enumerate(zip(conf.resblock_kernel_sizes, | |
conf.resblock_dilation_sizes)): | |
resblock_list.append(resblock(conf, ch, k, d)) | |
resblock_list = nn.Sequential(*resblock_list) | |
self.resblocks.append(resblock_list) | |
self.resblocks = nn.Sequential(*self.resblocks) | |
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def load_state_dict(self, state_dict, strict=True): | |
# Fallback for old checkpoints (pre-ONNX fix) | |
new_sd = {} | |
for k, v in state_dict.items(): | |
new_k = k | |
if 'resblocks' in k: | |
parts = k.split(".") | |
# only do this is the checkpoint type is older | |
if len(parts) == 5: | |
layer = int(parts[1]) | |
new_layer = f"{layer//3}.{layer%3}" | |
new_k = f"resblocks.{new_layer}.{'.'.join(parts[2:])}" | |
new_sd[new_k] = v | |
# Fix for conv1d/conv2d/NHWC | |
curr_sd = self.state_dict() | |
for key in new_sd: | |
len_diff = len(new_sd[key].size()) - len(curr_sd[key].size()) | |
if len_diff == -1: | |
new_sd[key] = new_sd[key].unsqueeze(-1) | |
elif len_diff == 1: | |
new_sd[key] = new_sd[key].squeeze(-1) | |
super().load_state_dict(new_sd, strict=strict) | |
def forward(self, x): | |
x = self.conv_pre(x) | |
for upsample_layer, resblock_group in zip(self.ups, self.resblocks): | |
x = F.leaky_relu(x, self.lrelu_slope) | |
x = upsample_layer(x) | |
xs = 0 | |
for resblock in resblock_group: | |
xs += resblock(x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
print('HiFi-GAN: Removing weight norm.') | |
for l in self.ups: | |
remove_weight_norm(l) | |
for group in self.resblocks: | |
for block in group: | |
block.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
class Denoiser(nn.Module): | |
""" Removes model bias from audio produced with hifigan """ | |
def __init__(self, hifigan, filter_length=1024, n_overlap=4, | |
win_length=1024, mode='zeros', device="cpu", **infer_kw): | |
super().__init__() | |
self.stft = STFT(filter_length=filter_length, | |
hop_length=int(filter_length/n_overlap), | |
#win_length=win_length).cuda() # was like this | |
win_length=win_length, device=device) | |
for name, p in hifigan.named_parameters(): | |
if name.endswith('.weight'): | |
dtype = p.dtype | |
device = p.device | |
break | |
mel_init = {'zeros': torch.zeros, 'normal': torch.randn}[mode] | |
mel_input = mel_init((1, 80, 88), dtype=dtype, device=device) | |
with torch.no_grad(): | |
bias_audio = hifigan(mel_input, **infer_kw).float() | |
if len(bias_audio.size()) > 2: | |
bias_audio = bias_audio.squeeze(0) | |
elif len(bias_audio.size()) < 2: | |
bias_audio = bias_audio.unsqueeze(0) | |
assert len(bias_audio.size()) == 2 | |
bias_spec, _ = self.stft.transform(bias_audio) | |
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) | |
def forward(self, audio, strength=0.1): | |
audio_spec, audio_angles = self.stft.transform(audio.float()) | |
audio_spec_denoised = audio_spec - self.bias_spec * strength | |
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) | |
audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) | |
return audio_denoised | |
class DiscriminatorP(nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super().__init__() | |
self.period = period | |
norm_f = spectral_norm if use_spectral_norm else weight_norm | |
ks = kernel_size | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(1, 32, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), | |
norm_f(Conv2d(32, 128, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), | |
norm_f(Conv2d(128, 512, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), | |
norm_f(Conv2d(512, 1024, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), | |
norm_f(Conv2d(1024, 1024, (ks, 1), 1, padding=(2, 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
def share_params_of(self, dp): | |
assert len(self.convs) == len(dp.convs) | |
for c1, c2 in zip(self.convs, dp.convs): | |
c1.weight = c2.weight | |
c1.bias = c2.bias | |
class MultiPeriodDiscriminator(nn.Module): | |
def __init__(self, periods, concat_fwd=False): | |
super().__init__() | |
layers = [DiscriminatorP(p) for p in periods] | |
self.discriminators = nn.ModuleList(layers) | |
self.concat_fwd = concat_fwd | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
if self.concat_fwd: | |
y_ds, fmaps = d(concat_discr_input(y, y_hat)) | |
y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) | |
else: | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(nn.Module): | |
def __init__(self, use_spectral_norm=False, no_amp_grouped_conv=False): | |
super().__init__() | |
norm_f = spectral_norm if use_spectral_norm else weight_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
norm_f(NoAMPConv1d(128, 256, 41, 2, groups=16, padding=20, no_amp=no_amp_grouped_conv)), | |
norm_f(NoAMPConv1d(256, 512, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), | |
norm_f(NoAMPConv1d(512, 1024, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), | |
norm_f(NoAMPConv1d(1024, 1024, 41, 1, groups=16, padding=20, no_amp=no_amp_grouped_conv)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
]) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
for l in self.convs: | |
# x = l(x.unsqueeze(-1)).squeeze(-1) | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiScaleDiscriminator(nn.Module): | |
def __init__(self, no_amp_grouped_conv=False, concat_fwd=False): | |
super().__init__() | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorS(use_spectral_norm=True, no_amp_grouped_conv=no_amp_grouped_conv), | |
DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), | |
DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), | |
]) | |
self.meanpools = nn.ModuleList([ | |
AvgPool1d(4, 2, padding=1), | |
AvgPool1d(4, 2, padding=1) | |
]) | |
self.concat_fwd = concat_fwd | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
if self.concat_fwd: | |
ys = concat_discr_input(y, y_hat) | |
if i != 0: | |
ys = self.meanpools[i-1](ys) | |
y_ds, fmaps = d(ys) | |
y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) | |
else: | |
if i != 0: | |
y = self.meanpools[i-1](y) | |
y_hat = self.meanpools[i-1](y_hat) | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
def concat_discr_input(y, y_hat): | |
return torch.cat((y, y_hat), dim=0) | |
def split_discr_output(y_ds, fmaps): | |
y_d_r, y_d_g = torch.chunk(y_ds, 2, dim=0) | |
fmap_r, fmap_g = zip(*(torch.chunk(f, 2, dim=0) for f in fmaps)) | |
return y_d_r, y_d_g, fmap_r, fmap_g | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss*2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1-dr)**2) | |
g_loss = torch.mean(dg**2) | |
loss += (r_loss + g_loss) | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean((1-dg)**2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |