multi-sami / hifigan /models.py
katrihiovain
initial commit
8146713
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# MIT License
#
# Copyright (c) 2020 Jungil Kong
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# The following functions/classes were based on code from https://github.com/jik876/hifi-gan:
# ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator,
# MultiPeriodDiscriminator, feature_loss, discriminator_loss, generator_loss,
# init_weights, get_padding
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
from common.stft import STFT
from common.utils import AttrDict, init_weights, get_padding
LRELU_SLOPE = 0.1
class NoAMPConv1d(Conv1d):
def __init__(self, *args, no_amp=False, **kwargs):
super().__init__(*args, **kwargs)
self.no_amp = no_amp
def _cast(self, x, dtype):
if isinstance(x, (list, tuple)):
return [self._cast(t, dtype) for t in x]
else:
return x.to(dtype)
def forward(self, *args):
if not self.no_amp:
return super().forward(*args)
with torch.cuda.amp.autocast(enabled=False):
return self._cast(
super().forward(*self._cast(args, torch.float)), args[0].dtype)
class ResBlock1(nn.Module):
__constants__ = ['lrelu_slope']
def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.conf = conf
self.lrelu_slope = LRELU_SLOPE
ch, ks = channels, kernel_size
self.convs1 = nn.Sequential(*[
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[0]), dilation[0])),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[1]), dilation[1])),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[2]), dilation[2])),
])
self.convs2 = nn.Sequential(*[
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))),
])
self.convs1.apply(init_weights)
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, self.lrelu_slope)
xt = c1(xt)
xt = F.leaky_relu(xt, self.lrelu_slope)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(nn.Module):
__constants__ = ['lrelu_slope']
def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3)):
super().__init__()
self.conf = conf
ch, ks = channels, kernel_size
self.convs = nn.ModuleList([
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[0]), dilation[0])),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[1]), dilation[1])),
])
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, self.lrelu_slope)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Generator(nn.Module):
__constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples']
def __init__(self, conf):
super().__init__()
conf = AttrDict(conf)
self.conf = conf
self.num_kernels = len(conf.resblock_kernel_sizes)
self.num_upsamples = len(conf.upsample_rates)
self.conv_pre = weight_norm(
Conv1d(80, conf.upsample_initial_channel, 7, 1, padding=3))
self.lrelu_slope = LRELU_SLOPE
resblock = ResBlock1 if conf.resblock == '1' else ResBlock2
self.ups = []
for i, (u, k) in enumerate(zip(conf.upsample_rates,
conf.upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(conf.upsample_initial_channel // (2 ** i),
conf.upsample_initial_channel // (2 ** (i + 1)),
k, u, padding=(k-u)//2)))
self.ups = nn.Sequential(*self.ups)
self.resblocks = []
for i in range(len(self.ups)):
resblock_list = []
ch = conf.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(conf.resblock_kernel_sizes,
conf.resblock_dilation_sizes)):
resblock_list.append(resblock(conf, ch, k, d))
resblock_list = nn.Sequential(*resblock_list)
self.resblocks.append(resblock_list)
self.resblocks = nn.Sequential(*self.resblocks)
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def load_state_dict(self, state_dict, strict=True):
# Fallback for old checkpoints (pre-ONNX fix)
new_sd = {}
for k, v in state_dict.items():
new_k = k
if 'resblocks' in k:
parts = k.split(".")
# only do this is the checkpoint type is older
if len(parts) == 5:
layer = int(parts[1])
new_layer = f"{layer//3}.{layer%3}"
new_k = f"resblocks.{new_layer}.{'.'.join(parts[2:])}"
new_sd[new_k] = v
# Fix for conv1d/conv2d/NHWC
curr_sd = self.state_dict()
for key in new_sd:
len_diff = len(new_sd[key].size()) - len(curr_sd[key].size())
if len_diff == -1:
new_sd[key] = new_sd[key].unsqueeze(-1)
elif len_diff == 1:
new_sd[key] = new_sd[key].squeeze(-1)
super().load_state_dict(new_sd, strict=strict)
def forward(self, x):
x = self.conv_pre(x)
for upsample_layer, resblock_group in zip(self.ups, self.resblocks):
x = F.leaky_relu(x, self.lrelu_slope)
x = upsample_layer(x)
xs = 0
for resblock in resblock_group:
xs += resblock(x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('HiFi-GAN: Removing weight norm.')
for l in self.ups:
remove_weight_norm(l)
for group in self.resblocks:
for block in group:
block.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class Denoiser(nn.Module):
""" Removes model bias from audio produced with hifigan """
def __init__(self, hifigan, filter_length=1024, n_overlap=4,
win_length=1024, mode='zeros', device="cpu", **infer_kw):
super().__init__()
self.stft = STFT(filter_length=filter_length,
hop_length=int(filter_length/n_overlap),
#win_length=win_length).cuda() # was like this
win_length=win_length, device=device)
for name, p in hifigan.named_parameters():
if name.endswith('.weight'):
dtype = p.dtype
device = p.device
break
mel_init = {'zeros': torch.zeros, 'normal': torch.randn}[mode]
mel_input = mel_init((1, 80, 88), dtype=dtype, device=device)
with torch.no_grad():
bias_audio = hifigan(mel_input, **infer_kw).float()
if len(bias_audio.size()) > 2:
bias_audio = bias_audio.squeeze(0)
elif len(bias_audio.size()) < 2:
bias_audio = bias_audio.unsqueeze(0)
assert len(bias_audio.size()) == 2
bias_spec, _ = self.stft.transform(bias_audio)
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
def forward(self, audio, strength=0.1):
audio_spec, audio_angles = self.stft.transform(audio.float())
audio_spec_denoised = audio_spec - self.bias_spec * strength
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles)
return audio_denoised
class DiscriminatorP(nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super().__init__()
self.period = period
norm_f = spectral_norm if use_spectral_norm else weight_norm
ks = kernel_size
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (ks, 1), (stride, 1), (get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (ks, 1), (stride, 1), (get_padding(5, 1), 0))),
norm_f(Conv2d(128, 512, (ks, 1), (stride, 1), (get_padding(5, 1), 0))),
norm_f(Conv2d(512, 1024, (ks, 1), (stride, 1), (get_padding(5, 1), 0))),
norm_f(Conv2d(1024, 1024, (ks, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
def share_params_of(self, dp):
assert len(self.convs) == len(dp.convs)
for c1, c2 in zip(self.convs, dp.convs):
c1.weight = c2.weight
c1.bias = c2.bias
class MultiPeriodDiscriminator(nn.Module):
def __init__(self, periods, concat_fwd=False):
super().__init__()
layers = [DiscriminatorP(p) for p in periods]
self.discriminators = nn.ModuleList(layers)
self.concat_fwd = concat_fwd
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if self.concat_fwd:
y_ds, fmaps = d(concat_discr_input(y, y_hat))
y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps)
else:
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(nn.Module):
def __init__(self, use_spectral_norm=False, no_amp_grouped_conv=False):
super().__init__()
norm_f = spectral_norm if use_spectral_norm else weight_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(NoAMPConv1d(128, 256, 41, 2, groups=16, padding=20, no_amp=no_amp_grouped_conv)),
norm_f(NoAMPConv1d(256, 512, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)),
norm_f(NoAMPConv1d(512, 1024, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)),
norm_f(NoAMPConv1d(1024, 1024, 41, 1, groups=16, padding=20, no_amp=no_amp_grouped_conv)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
# x = l(x.unsqueeze(-1)).squeeze(-1)
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(nn.Module):
def __init__(self, no_amp_grouped_conv=False, concat_fwd=False):
super().__init__()
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True, no_amp_grouped_conv=no_amp_grouped_conv),
DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv),
DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv),
])
self.meanpools = nn.ModuleList([
AvgPool1d(4, 2, padding=1),
AvgPool1d(4, 2, padding=1)
])
self.concat_fwd = concat_fwd
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if self.concat_fwd:
ys = concat_discr_input(y, y_hat)
if i != 0:
ys = self.meanpools[i-1](ys)
y_ds, fmaps = d(ys)
y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps)
else:
if i != 0:
y = self.meanpools[i-1](y)
y_hat = self.meanpools[i-1](y_hat)
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
def concat_discr_input(y, y_hat):
return torch.cat((y, y_hat), dim=0)
def split_discr_output(y_ds, fmaps):
y_d_r, y_d_g = torch.chunk(y_ds, 2, dim=0)
fmap_r, fmap_g = zip(*(torch.chunk(f, 2, dim=0) for f in fmaps))
return y_d_r, y_d_g, fmap_r, fmap_g
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss*2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1-dr)**2)
g_loss = torch.mean(dg**2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1-dg)**2)
gen_losses.append(l)
loss += l
return loss, gen_losses