# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator, # MultiPeriodDiscriminator, feature_loss, discriminator_loss, generator_loss, # init_weights, get_padding import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm from common.stft import STFT from common.utils import AttrDict, init_weights, get_padding LRELU_SLOPE = 0.1 class NoAMPConv1d(Conv1d): def __init__(self, *args, no_amp=False, **kwargs): super().__init__(*args, **kwargs) self.no_amp = no_amp def _cast(self, x, dtype): if isinstance(x, (list, tuple)): return [self._cast(t, dtype) for t in x] else: return x.to(dtype) def forward(self, *args): if not self.no_amp: return super().forward(*args) with torch.cuda.amp.autocast(enabled=False): return self._cast( super().forward(*self._cast(args, torch.float)), args[0].dtype) class ResBlock1(nn.Module): __constants__ = ['lrelu_slope'] def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.conf = conf self.lrelu_slope = LRELU_SLOPE ch, ks = channels, kernel_size self.convs1 = nn.Sequential(*[ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[0]), dilation[0])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[1]), dilation[1])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[2]), dilation[2])), ]) self.convs2 = nn.Sequential(*[ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), ]) self.convs1.apply(init_weights) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, self.lrelu_slope) xt = c1(xt) xt = F.leaky_relu(xt, self.lrelu_slope) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(nn.Module): __constants__ = ['lrelu_slope'] def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3)): super().__init__() self.conf = conf ch, ks = channels, kernel_size self.convs = nn.ModuleList([ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[0]), dilation[0])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[1]), dilation[1])), ]) self.convs.apply(init_weights) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, self.lrelu_slope) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator(nn.Module): __constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples'] def __init__(self, conf): super().__init__() conf = AttrDict(conf) self.conf = conf self.num_kernels = len(conf.resblock_kernel_sizes) self.num_upsamples = len(conf.upsample_rates) self.conv_pre = weight_norm( Conv1d(80, conf.upsample_initial_channel, 7, 1, padding=3)) self.lrelu_slope = LRELU_SLOPE resblock = ResBlock1 if conf.resblock == '1' else ResBlock2 self.ups = [] for i, (u, k) in enumerate(zip(conf.upsample_rates, conf.upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(conf.upsample_initial_channel // (2 ** i), conf.upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k-u)//2))) self.ups = nn.Sequential(*self.ups) self.resblocks = [] for i in range(len(self.ups)): resblock_list = [] ch = conf.upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(conf.resblock_kernel_sizes, conf.resblock_dilation_sizes)): resblock_list.append(resblock(conf, ch, k, d)) resblock_list = nn.Sequential(*resblock_list) self.resblocks.append(resblock_list) self.resblocks = nn.Sequential(*self.resblocks) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def load_state_dict(self, state_dict, strict=True): # Fallback for old checkpoints (pre-ONNX fix) new_sd = {} for k, v in state_dict.items(): new_k = k if 'resblocks' in k: parts = k.split(".") # only do this is the checkpoint type is older if len(parts) == 5: layer = int(parts[1]) new_layer = f"{layer//3}.{layer%3}" new_k = f"resblocks.{new_layer}.{'.'.join(parts[2:])}" new_sd[new_k] = v # Fix for conv1d/conv2d/NHWC curr_sd = self.state_dict() for key in new_sd: len_diff = len(new_sd[key].size()) - len(curr_sd[key].size()) if len_diff == -1: new_sd[key] = new_sd[key].unsqueeze(-1) elif len_diff == 1: new_sd[key] = new_sd[key].squeeze(-1) super().load_state_dict(new_sd, strict=strict) def forward(self, x): x = self.conv_pre(x) for upsample_layer, resblock_group in zip(self.ups, self.resblocks): x = F.leaky_relu(x, self.lrelu_slope) x = upsample_layer(x) xs = 0 for resblock in resblock_group: xs += resblock(x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('HiFi-GAN: Removing weight norm.') for l in self.ups: remove_weight_norm(l) for group in self.resblocks: for block in group: block.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class Denoiser(nn.Module): """ Removes model bias from audio produced with hifigan """ def __init__(self, hifigan, filter_length=1024, n_overlap=4, win_length=1024, mode='zeros', device="cpu", **infer_kw): super().__init__() self.stft = STFT(filter_length=filter_length, hop_length=int(filter_length/n_overlap), #win_length=win_length).cuda() # was like this win_length=win_length, device=device) for name, p in hifigan.named_parameters(): if name.endswith('.weight'): dtype = p.dtype device = p.device break mel_init = {'zeros': torch.zeros, 'normal': torch.randn}[mode] mel_input = mel_init((1, 80, 88), dtype=dtype, device=device) with torch.no_grad(): bias_audio = hifigan(mel_input, **infer_kw).float() if len(bias_audio.size()) > 2: bias_audio = bias_audio.squeeze(0) elif len(bias_audio.size()) < 2: bias_audio = bias_audio.unsqueeze(0) assert len(bias_audio.size()) == 2 bias_spec, _ = self.stft.transform(bias_audio) self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) def forward(self, audio, strength=0.1): audio_spec, audio_angles = self.stft.transform(audio.float()) audio_spec_denoised = audio_spec - self.bias_spec * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) return audio_denoised class DiscriminatorP(nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super().__init__() self.period = period norm_f = spectral_norm if use_spectral_norm else weight_norm ks = kernel_size self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(128, 512, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(512, 1024, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (ks, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap def share_params_of(self, dp): assert len(self.convs) == len(dp.convs) for c1, c2 in zip(self.convs, dp.convs): c1.weight = c2.weight c1.bias = c2.bias class MultiPeriodDiscriminator(nn.Module): def __init__(self, periods, concat_fwd=False): super().__init__() layers = [DiscriminatorP(p) for p in periods] self.discriminators = nn.ModuleList(layers) self.concat_fwd = concat_fwd def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if self.concat_fwd: y_ds, fmaps = d(concat_discr_input(y, y_hat)) y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) else: y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(nn.Module): def __init__(self, use_spectral_norm=False, no_amp_grouped_conv=False): super().__init__() norm_f = spectral_norm if use_spectral_norm else weight_norm self.convs = nn.ModuleList([ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(NoAMPConv1d(128, 256, 41, 2, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(256, 512, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(512, 1024, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(1024, 1024, 41, 1, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: # x = l(x.unsqueeze(-1)).squeeze(-1) x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(nn.Module): def __init__(self, no_amp_grouped_conv=False, concat_fwd=False): super().__init__() self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True, no_amp_grouped_conv=no_amp_grouped_conv), DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), ]) self.meanpools = nn.ModuleList([ AvgPool1d(4, 2, padding=1), AvgPool1d(4, 2, padding=1) ]) self.concat_fwd = concat_fwd def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if self.concat_fwd: ys = concat_discr_input(y, y_hat) if i != 0: ys = self.meanpools[i-1](ys) y_ds, fmaps = d(ys) y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) else: if i != 0: y = self.meanpools[i-1](y) y_hat = self.meanpools[i-1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def concat_discr_input(y, y_hat): return torch.cat((y, y_hat), dim=0) def split_discr_output(y_ds, fmaps): y_d_r, y_d_g = torch.chunk(y_ds, 2, dim=0) fmap_r, fmap_g = zip(*(torch.chunk(f, 2, dim=0) for f in fmaps)) return y_d_r, y_d_g, fmap_r, fmap_g def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss*2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) g_loss = torch.mean(dg**2) loss += (r_loss + g_loss) r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1-dg)**2) gen_losses.append(l) loss += l return loss, gen_losses