File size: 26,441 Bytes
daffb56 0a4b027 daffb56 bfe99b9 daffb56 bfe99b9 daffb56 0a4b027 daffb56 0a4b027 daffb56 d974da3 daffb56 0a4b027 daffb56 d974da3 daffb56 0a4b027 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
import torch
from torch import nn
import torch.nn.functional as F
from omegaconf import OmegaConf
import numpy as np
from huggingface_hub import hf_hub_download
import os
from torch.nn.utils import weight_norm
from transformers import T5EncoderModel, T5Tokenizer # type: ignore
from einops import rearrange
torch.backends.cuda.enable_mem_efficient_sdp(True)
N_REPEAT = 2 # num (virtual batch_size) clones of audio sounds
def _shift(x):
#print(x.shape, 'BATCH Independent SHIFT\n AudioGen')
for i, _slice in enumerate(x):
n = x.shape[2]
offset = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0 TBD
print(offset)
x[i, :, :] = torch.roll(_slice, offset, dims=1) # _slice 2D
return x
class AudioGen(torch.nn.Module):
# https://huggingface.co/facebook/audiogen-medium
def __init__(self):
super().__init__()
_file_1 = hf_hub_download(
repo_id='facebook/audiogen-medium',
filename="compression_state_dict.bin",
cache_dir=os.environ.get('AUDIOCRAFT_CACHE_DIR', None),
library_name="audiocraft",
library_version= '1.3.0a1') # Found at __init__.py #audiocraft.__version__)
pkg = torch.load(_file_1, map_location='cpu')# kwargs = OmegaConf.create(pkg['xp.cfg'])
self.compression_model = EncodecModel()
self.compression_model.load_state_dict(pkg['best_state'], strict=False)
self.compression_model.eval() # ckpt has also unused encoder weights
self._chunk_len = 476
_file_2 = hf_hub_download(
repo_id='facebook/audiogen-medium',
filename="state_dict.bin",
cache_dir=os.environ.get('AUDIOCRAFT_CACHE_DIR', None),
library_name="audiocraft",
library_version= '1.3.0a1') # Found at __init__.py #audiocraft.__version__)
pkg = torch.load(_file_2, map_location='cpu')
cfg = OmegaConf.create(pkg['xp.cfg']) # CFG inside torch bin
_best = pkg['best_state']
_best['t5.output_proj.weight'] = _best.pop('condition_provider.conditioners.description.output_proj.weight')#.to(torch.float)
_best['t5.output_proj.bias'] = _best.pop('condition_provider.conditioners.description.output_proj.bias')#.to(torch.float)
self.lm = LMModel()
self.lm.load_state_dict(pkg['best_state'], strict=True)
self.lm.eval()
@torch.no_grad()
def generate(self,
prompt='dogs mewo',
duration=2.24, # seconds of audio
cache_lim=71, # flush kv cache after cache_lim tok
):
torch.manual_seed(42) # https://github.com/facebookresearch/audiocraft/issues/111#issuecomment-1614732858
self.lm.cache_lim = cache_lim
self.lm.n_draw = int(.8 * duration) + 1 # different beam every 0.47 seconds of audio
with torch.autocast(device_type='cpu', dtype=torch.bfloat16):
gen_tokens = self.lm.generate(
text_condition=[prompt] * N_REPEAT + [''] * N_REPEAT,#['dogs', 'dogs...!', '', '']
max_tokens=int(.04 * duration / N_REPEAT * self.compression_model.frame_rate) + 12) # [bs, 4, 74*self.lm.n_draw]
# OOM if vocode all tokens
x = []
for i in range(7, gen_tokens.shape[2], self._chunk_len): # min soundscape 2s assures 10 tokens
decoded_chunk = self.compression_model.decode(gen_tokens[:, :, i-7:i+self._chunk_len])
x.append(decoded_chunk)
x = torch.cat(x, 2) # [bs, 1, 114000]
x = _shift(x) # clone() to have xN
return x.reshape(-1) #x / (x.abs().max() + 1e-7)
class EncodecModel(nn.Module):
def __init__(self):
super().__init__()
self.decoder = SEANetDecoder()
self.quantizer = ResidualVectorQuantizer()
self.frame_rate = 50
def decode(self, codes):
# B,K,T -> B,C,T
emb = self.quantizer.decode(codes)
return self.decoder(emb)
class StreamableLSTM(nn.Module):
def __init__(self,
dimension,
num_layers=2,
skip=True):
super().__init__()
self.skip = skip
self.lstm = nn.LSTM(dimension, dimension, num_layers)
def forward(self, x):
x = x.permute(2, 0, 1)
y, _ = self.lstm(x)
if self.skip:
y = y + x
y = y.permute(1, 2, 0)
return y
class SEANetResnetBlock(nn.Module):
def __init__(self,
dim,
kernel_sizes = [3, 1],
pad_mode = 'reflect',
compress = 2):
super().__init__()
hidden = dim // compress
block = []
for i, kernel_size in enumerate(kernel_sizes):
in_chs = dim if i == 0 else hidden
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
block += [nn.ELU(),
StreamableConv1d(in_chs,
out_chs,
kernel_size=kernel_size,
pad_mode=pad_mode)]
self.block = nn.Sequential(*block)
def forward(self, x):
return x + self.block(x)
class SEANetDecoder(nn.Module):
# channels=1 dimension=128 n_filters=64 n_residual_layers=1 ratios=[8, 5, 4, 2]
# activation='ELU' activation_params={'alpha': 1.0}, final_activation=None
# final_activation_params=None norm='weight_norm'
# norm_params={} kernel_size=7 last_kernel_size=7 residual_kernel_size=3 dilation_base=2
# causal=False pad_mode='constant'
# true_skip=True compress=2 lstm=2 disable_norm_outer_blocks=0 trim_right_ratio=1.0
def __init__(self,
channels = 1,
dimension = 128,
n_filters = 64,
n_residual_layers = 1,
ratios = [8, 5, 4, 2],
kernel_size = 7,
last_kernel_size = 7,
residual_kernel_size = 3,
pad_mode = 'constant',
compress = 2,
lstm = 2):
super().__init__()
mult = int(2 ** len(ratios))
model = [
StreamableConv1d(dimension, mult * n_filters,
kernel_size,
pad_mode=pad_mode)
]
if lstm:
print('\n\n\n\nLSTM IN SEANET\n\n\n\n')
model += [StreamableLSTM(mult * n_filters,
num_layers=lstm)]
# Upsample to raw audio scale
for i, ratio in enumerate(ratios):
model += [
nn.ELU(),
StreamableConvTranspose1d(mult * n_filters,
mult * n_filters // 2,
kernel_size=ratio * 2,
stride=ratio),
]
# Add residual layers
for j in range(n_residual_layers):
model += [
SEANetResnetBlock(mult * n_filters // 2,
kernel_sizes=[residual_kernel_size, 1],
pad_mode=pad_mode,
compress=compress)]
mult //= 2
# Add final layers
model += [
nn.ELU(),
StreamableConv1d(n_filters,
channels,
last_kernel_size,
pad_mode=pad_mode)]
self.model=nn.Sequential(*model)
def forward(self, z):
return self.model(z)
def unpad1d(x, paddings):
padding_left, padding_right = paddings
end = x.shape[-1] - padding_right
return x[..., padding_left: end]
class NormConv1d(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self.conv = weight_norm(nn.Conv1d(*args, **kwargs)) # norm = weight_norm
def forward(self, x):
return self.conv(x)
class NormConvTranspose1d(nn.Module):
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs = {}, **kwargs):
super().__init__()
self.convtr = weight_norm(nn.ConvTranspose1d(*args, **kwargs))
def forward(self, x):
return self.convtr(x)
class StreamableConv1d(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
bias=True,
pad_mode='reflect'):
super().__init__()
if (stride != 1) or (groups != 1):
raise ValueError
self.conv = NormConv1d(in_channels,
out_channels,
kernel_size,
stride,
groups=groups,
bias=bias)
self.pad_mode = pad_mode
def forward(self, x):
kernel_size = self.conv.conv.kernel_size[0]
kernel_size = (kernel_size - 1) * self.conv.conv.dilation[0] + 1
padding_total = kernel_size - self.conv.conv.stride[0]
padding_right = padding_total // 2
padding_left = padding_total - padding_right
# x = pad1d(x, (padding_left, padding_right), mode=self.pad_mode)
x = F.pad(x, (padding_left, padding_right), self.pad_mode)
return self.conv(x)
class StreamableConvTranspose1d(nn.Module):
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, causal: bool = False,
norm: str = 'none', trim_right_ratio: float = 1.,
norm_kwargs = {}):
super().__init__()
self.convtr = NormConvTranspose1d(in_channels,
out_channels,
kernel_size,
stride)
def forward(self, x):
padding_total = self.convtr.convtr.kernel_size[0] - self.convtr.convtr.stride[0]
y = self.convtr(x)
# Asymmetric padding required for odd strides
# print('\n \n\n\nn\n\n\nnANTICAUSAL T\n\n\n')
padding_right = padding_total // 2
padding_left = padding_total - padding_right
y = unpad1d(y, (padding_left, padding_right))
return y
# VQ
class EuclideanCodebook(nn.Module):
def __init__(self,
dim,
codebook_size):
super().__init__()
self.register_buffer("embed", torch.zeros(codebook_size, dim))
class VectorQuantization(nn.Module):
def __init__(self,
dim,
codebook_size):
super().__init__()
self._codebook = EuclideanCodebook(dim=dim,
codebook_size=codebook_size)
def decode(self, _ind):
return F.embedding(_ind, self._codebook.embed)
class ResidualVectorQuantization(nn.Module):
def __init__(self, *, num_quantizers, **kwargs):
super().__init__()
self.layers = nn.ModuleList(
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
)
def decode(self, _ind):
x = 0.0
for i, _code in enumerate(_ind):
x = x + self.layers[i].decode(_code)
return x.transpose(1, 2)
class ResidualVectorQuantizer(nn.Module):
# dimension=128 n_q=4 q_dropout=False bins=2048 decay=0.99 kmeans_init=True
# kmeans_iters=50 threshold_ema_dead_code=2
# orthogonal_reg_weight=0.0 orthogonal_reg_active_codes_only=False
# orthogonal_reg_max_codes=None
def __init__(
self,
dimension = 128,
n_q = 4,
bins = 2048
):
super().__init__()
self.vq = ResidualVectorQuantization(dim=dimension,
codebook_size=bins,
num_quantizers=n_q)
def decode(self, codes):
# codes is [B, K, T], with T frames, K nb of codebooks, vq.decode expects [K, B, T].
return self.vq.decode(codes.transpose(0, 1))
class T5(nn.Module):
def __init__(self):
super().__init__()
self.output_proj = nn.Linear(1024, # t5-large
1536) # lm hidden
self.t5_tokenizer = T5Tokenizer.from_pretrained('t5-large', legacy=True)
t5 = T5EncoderModel.from_pretrained('t5-large').train(mode=False)
# this makes sure that the t5 is not part
# of the saved checkpoint
self.__dict__['t5'] = t5.to('cpu')
def forward(self, prompt):
with torch.set_grad_enabled(False): #, torch.autocast(device_type='cpu', dtype=torch.float32):
bs = len(prompt) // 2
d = self.t5_tokenizer(prompt,
return_tensors='pt',
padding=True).to(self.output_proj.bias.device)
d['attention_mask'][bs:, :] = 0 # null condition t5 attn_mask should be zero
x = self.t5(input_ids=d['input_ids'],
attention_mask=d['attention_mask']).last_hidden_state # no kv
# Float 16
# > self.output_proj() is outside of autocast of t5 - however inside the autocast of lm thus computed in torch.float16
x = self.output_proj(x) # nn.Linear() - produces different result if there is no duplicate txt condition here
x[bs:, :, :] = 0 # venv/../site-packages/audiocraft/modules/conditioners.py -> tokenize()
return x
class LMModel(nn.Module):
def __init__(self,
n_q = 4,
card = 2048,
dim = 1536
):
super().__init__()
self.cache_lim = -1
self.t5 = T5()
self.card = card # 2048
self.n_draw = 1 # draw > 1 tokens of different CFG scale
# batch size > 1 is slower from n_draw as calls transformer on larger batch
self.emb = nn.ModuleList([nn.Embedding(self.card + 1, dim) for _ in range(n_q)]) # EMBEDDING HAS 2049
self.transformer = StreamingTransformer()
self.out_norm = nn.LayerNorm(dim, eps=1e-5)
self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=False) for _ in range(n_q)]) # LINEAR DOESNT HAVE 2049
def forward(self,
sequence,
condition_tensors=None,
cache_position=None
):
bs, n_q, time_frames = sequence.shape # [bs, 4, time]
input_ = sum([self.emb[k](sequence[:, k]) for k in range(n_q)])
out = self.transformer(torch.cat([input_, input_], 0), # duplicate null condition (bs x 2) for ClassifierFreeGuidance
cross_attention_src=condition_tensors,
cache_position=cache_position)
out = self.out_norm(out)
logits = torch.stack([self.linears[k](out) for k in range(n_q)], dim=1) # [2*bs, 4, 1, 2048]
logits = 3 * logits[:bs, :, :, :] - self._scale * logits[bs:, :, :, :] # [ bs, 4, n_draw, 2048]
#bs, n_q, n_draw, vocab = logits.shape
tokens = torch.multinomial(torch.softmax(logits.view(bs * self.n_draw * n_q, 2048), dim=1),
num_samples=1)
return tokens.view(bs, n_q, self.n_draw).transpose(1, 2)
@torch.no_grad()
def generate(self,
max_tokens=None,
text_condition=None
):
x = self.t5(text_condition)
bs = x.shape[0] // 2 # has null conditions - bs*2*N_REPEAT applys in builders.py
self._scale = .3 * torch.rand(1, 1, self.n_draw, 1, device=x.device) + 1.94
cache_position = 0
out_codes = torch.full((bs,
self.n_draw,
4,
4 + 3 + max_tokens), # 4 + max_tokens + 4-1 to have sufficient to index the 1st antidiagonal of 4x4 + 4 xtra tokens
self.card,
dtype=torch.long,
device=x.device) # [bs, n_draw, 4, dur]
# A/R
for offset in range(0, max_tokens + 4 - 1): # max_tokens + n_q - 1
# extract diagonal via indexing out_codes[ [0, 1, 2, 3], [0, 1, 2, 3] ]
next_token = self.forward(out_codes[:, 0, [0, 1, 2, 3], torch.tensor([3, 2, 1, 0]) + offset][:, :, None], # index diagonal & exapnd to [bs, n_q, dur=1]
#gen_sequence[:, 0, :, offset-1:offset], # DIAGINDEXING for setting prediction of lm into gen_sequence THE GENSEQUENCE has to be un-delayed in the end [Because it has to be de-delayed for the vocoder then is actually only the lm input that requires to see the delay thus we could just feed by diaggather] so it matches gen_codes -1 a[[0, 1, 2, 3], torch.tensor([0, 1, 2, 3]) + 5] the gen_sequence is indexed by vertical column and fed to lm however the prediction of lm is place diagonally with delay to the gen_sequence
condition_tensors=x, # utilisation of the attention mask of txt condition ?
cache_position=cache_position) # [bs, n_draw, 4]
# Fill of next_token should be also placed on antidiagonal [not column]
# Do Not Overwrite 2048 of TRIU/TRIL = START/END => Do Not Fill them by Predicted Tokens
# 0-th antidiagonal should be full of card = [2048, 2048, 2048, 2048]
#
# [2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048, 2048, 2048],
# [2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048, 2048],
# [2048, 2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048],
# [2048, 2048, 2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6]]
# NO OVerWriting
if offset == 0:
next_token[:, :, 1:4] = 2048 # self.card - bottom 3 entries of the antidiagonal should remain 2048
elif offset == 1:
next_token[:, :, 2:4] = 2048 # bottom 2 entries of the antidiagonal should remain 2048
elif offset == 2:
next_token[:, :, 3:4] = 2048
elif offset == max_tokens:
next_token[:, :, 0:1] = 2048 # top 1 entry of the antidiagonal should stay to 2048
elif offset == (max_tokens + 1):
next_token[:, :, 0:2] = 2048
elif offset == (max_tokens + 2):
next_token[:, :, 0:3] = 2048
else: # offset 3,4,5,6,7...... max_tokens-1 # FILL Complete n_q = 4 ANTIDIAGONAL ENTRIES
pass #print('No delete anti-diag')
out_codes[:, :, [0, 1, 2, 3], torch.tensor([3, 2, 1, 0]) + offset + 1] = next_token
# Sink Attn
if (offset > 0) and (offset % self.cache_lim) == 0:
n_preserve = 4
self.transformer._flush(n_preserve=n_preserve)
cache_position = n_preserve
else:
cache_position += 1
# [bs, n_draw, 4, time+xtra] -> [bs, 4, n_draw, time] -> [bs, 4, time * n_draw]
out_codes = out_codes[:, :, :, 4:max_tokens+4].transpose(1, 2).reshape(bs, 4, self.n_draw * max_tokens)
# flush for next API call
self.transformer._flush()
return out_codes # SKIP THE 4 fill 2048
def create_sin_embedding(positions,
dim,
max_period=10000
):
# assert dim % 2 == 0
half_dim = dim // 2
positions = positions.to(torch.float)
adim = torch.arange(half_dim, device=positions.device,
dtype=torch.float).view(1, 1, -1)
max_period_tensor = torch.full([],
max_period,
device=positions.device,
dtype=torch.float) # avoid sync point
phase = positions / (max_period_tensor ** (adim / (half_dim - 1)))
# OFFICIAL is torch.float32 HOWEVER self_attn.in_prod_weight = torch.float16
return torch.cat([torch.cos(phase), torch.sin(phase)], dim=-1)
class StreamingMultiheadAttention(nn.Module):
def __init__(self,
embed_dim,
num_heads,
cross_attention=False,
):
super().__init__()
self.cross_attention = cross_attention
# if not self.cross_attention then it has kvcachingn
self.k_history = None
# cleanup history through LM inside GENERATION - Each 0,..,47 mha has different kv history
self.v_history = None
self.num_heads = num_heads
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.register_buffer('in_proj_weight', torch.ones((3 * embed_dim, embed_dim),
dtype=torch.float))
def forward(self,
query,
key=None,
value=None):
layout = "b h t d"
if self.cross_attention:
# Different queries, keys, values > split in_proj_weight
dim = self.in_proj_weight.shape[0] // 3
q = nn.functional.linear(query, self.in_proj_weight[:dim])
k = nn.functional.linear(key, self.in_proj_weight[dim: 2 * dim])
v = nn.functional.linear(value, self.in_proj_weight[2 * dim:])
q, k, v = [
rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k, v]]
else:
# Here <else> = self_attention for audio with itself (above is cross attention txt)
# HISTORY - DIFFERENT FOR EACH TRANSF LAYER
# here we have different floating values from official
projected = nn.functional.linear(query, self.in_proj_weight, None)
# print(query.sum(), projected.sum() , self.in_proj_weight.sum(), 'Lc') # verified official AudioGen values
bound_layout = "b h p t d"
packed = rearrange(
projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads)
q, k, v = packed.unbind(dim=2)
if self.k_history is not None:
# IF ctrl^c during live_demo the assigning of each of kv is non-atomic k!=v
# thus it will try to continue with incompatible k/v dims!
self.k_history = torch.cat([self.k_history, k], 2)
self.v_history = torch.cat([self.v_history, v], 2)
else:
self.k_history = k
self.v_history = v
# Assign Completed k / v to k / v
k = self.k_history
v = self.v_history
# -> kv CACHE ONLY APPLIES if not self.cross_attention
x = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=None, is_causal=False, dropout_p=0.0)
x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads)
x = self.out_proj(x)
return x
class StreamingTransformerLayer(nn.Module):
def __init__(self,
d_model,
num_heads,
dim_feedforward):
super().__init__()
self.self_attn = StreamingMultiheadAttention(embed_dim=d_model,
num_heads=num_heads)
self.linear1 = nn.Linear(d_model, dim_feedforward, bias=False)
self.linear2 = nn.Linear(dim_feedforward, d_model, bias=False)
self.cross_attention = StreamingMultiheadAttention(embed_dim=d_model,
num_heads=num_heads,
cross_attention=True)
self.norm_cross = nn.LayerNorm(d_model, eps=1e-5)
self.norm1 = nn.LayerNorm(d_model, eps=1e-5)
self.norm2 = nn.LayerNorm(d_model, eps=1e-5)
def forward(self,
x,
cross_attention_src=None):
x = x + self.self_attn(self.norm1(x))
x = x + self.cross_attention(query=self.norm_cross(x),
key=cross_attention_src,
value=cross_attention_src) # txtcondition
x = x + self.linear2(F.gelu(self.linear1(self.norm2(x))))
return x
class StreamingTransformer(nn.Module):
def __init__(self,
d_model=1536,
num_heads=24,
num_layers=48,
dim_feedforward=6144):
super().__init__()
self.layers = nn.ModuleList(
[
StreamingTransformerLayer(d_model=d_model,
num_heads=num_heads,
dim_feedforward=dim_feedforward) for _ in range(num_layers)
]
)
def forward(self,
x,
cache_position=None,
cross_attention_src=None):
x = x + create_sin_embedding(
torch.zeros(x.shape[0], 1, 1, device=x.device) + cache_position, 1536)
for lay in self.layers:
x = lay(x,
cross_attention_src=cross_attention_src)
return x
def _flush(self,
n_preserve=None):
for lay in self.layers:
if n_preserve is not None:
# cache position is difficult to choose to also preserve kv from end
lay.self_attn.k_history = lay.self_attn.k_history[:, :, :n_preserve, :]
lay.self_attn.v_history = lay.self_attn.v_history[:, :, :n_preserve, :]
else:
lay.self_attn.k_history = None
lay.self_attn.v_history = None
if __name__ == '__main__':
import audiofile
model = AudioGen().to('cpu')
x = model.generate(prompt='swims in lake frogs', duration=6.4).cpu().numpy()
audiofile.write('_sound_.wav', x, 16000)
|