Spaces:
Sleeping
Sleeping
File size: 1,231 Bytes
5a148a2 f3c6706 5a148a2 4c17e90 a4fa802 4c17e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from huggingface_hub import login
import os
hf_token = os.getenv("HuggingFaceApiKey")
if hf_token:
login(token=hf_token)
# Load Processor
from transformers import AutoProcessor
model_id = "google/paligemma-3b-pt-224"
processor = AutoProcessor.from_pretrained(model_id)
from transformers import PaliGemmaForConditionalGeneration
model_id = "dmusingu/PaliGemma-CXR"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
def answer_question(image, question):
# Process the image and question
inputs = processor(images=image, text=question, return_tensors="pt", padding=True)
# Perform the inference
outputs = model.generate(**inputs, max_new_tokens= 50)[0]
outputs = processor.decode(outputs[inputs["input_ids"].shape[1]:], skip_special_tokens = True)
return outputs
# Define the Gradio interface
iface = gr.Interface(
fn=answer_question,
inputs=[gr.Image(type="pil"), gr.Textbox(label="Question")],
outputs=gr.Textbox(label="Answer"),
title="PaliGemma-CXR: Report Generation, VQA, Object detection, Segmentation, Classification",
description="Upload an image of a chest X-ray and ask a question and the model will answer."
)
iface.launch() |