File size: 2,020 Bytes
6b5a511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import textwrap

model_id = "unsloth/gemma-3n-E2B-it-unsloth-bnb-4bit"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Load model in full precision on CPU โ€” no bitsandbytes
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="cpu",            # Force CPU
    torch_dtype=torch.float32,   # Use FP32 to ensure CPU compatibility
)

model.eval()

# Helper to format response nicely
def print_response(text: str) -> str:
    return "\n".join(textwrap.fill(line, 100) for line in text.split("\n"))

# Inference function for Gradio
def predict_text(system_prompt: str, user_prompt: str) -> str:
    messages = [
        {"role": "system", "content": [{"type": "text", "text": system_prompt.strip()}]},
        {"role": "user", "content": [{"type": "text", "text": user_prompt.strip()}]},
    ]

    inputs = tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt"
    ).to("cpu")

    input_len = inputs["input_ids"].shape[-1]

    with torch.inference_mode():
        output = model.generate(
            **inputs,
            max_new_tokens=300,
            do_sample=False,
            use_cache=False  # Important for CPU compatibility
        )

    generated = output[0][input_len:]
    decoded = tokenizer.decode(generated, skip_special_tokens=True)
    return print_response(decoded)

# Gradio UI
demo = gr.Interface(
    fn=predict_text,
    inputs=[
        gr.Textbox(lines=2, label="System Prompt", value="You are a helpful assistant."),
        gr.Textbox(lines=4, label="User Prompt", placeholder="Ask something..."),
    ],
    outputs=gr.Textbox(label="Gemma 3n Response"),
    title="Gemma 3n Chat (CPU-friendly)",
    description="Lightweight CPU-only chatbot using a quantized Gemma 3n model.",
)

if __name__ == "__main__":
    demo.launch()