uralk's picture
Update ui.py
c5b45d0 verified
raw
history blame
16.4 kB
"""
Defines the Gradio user interface and manages the application's state
and event handling.
This module is responsible for the presentation layer of the application.
It creates the interactive components and orchestrates the analysis workflow
by calling functions from the data_processing module.
"""
import gradio as gr
import json
import concurrent.futures
import threading
from data_processing import (
llm_generate_analysis_plan_with_history,
execute_quantitative_query,
execute_qualitative_query,
llm_synthesize_enriched_report_stream,
llm_generate_visualization_code,
execute_viz_code_and_get_path,
parse_suggestions_from_report
)
# Create a lock to protect the Solr client from concurrent access
solr_lock = threading.Lock()
def create_ui(llm_model, solr_client):
"""
Builds the Gradio UI and wires up all the event handlers.
Args:
llm_model: The initialized Google Gemini model client.
solr_client: The initialized pysolr client.
"""
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
state = gr.State()
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("# PharmaCircle AI Data Analyst")
with gr.Column(scale=1):
clear_button = gr.Button(
"πŸ”„ Start New Analysis", variant="primary")
gr.Markdown("Ask a question to begin your analysis. I will generate an analysis plan, retrieve quantitative and qualitative data, create a visualization, and write an enriched report.")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(
label="Analysis Chat Log", height=700, show_copy_button=True)
msg_textbox = gr.Textbox(
placeholder="Ask a question, e.g., 'Show me the top 5 companies by total deal value in 2023'", label="Your Question", interactive=True)
with gr.Column(scale=2):
with gr.Accordion("Dynamic Field Suggestions", open=False):
suggestions_display = gr.Markdown(
"Suggestions from the external API will appear here...", visible=True)
with gr.Accordion("Generated Analysis Plan", open=False):
plan_display = gr.Markdown(
"Plan will appear here...", visible=True)
with gr.Accordion("Retrieved Quantitative Data", open=False):
quantitative_url_display = gr.Markdown(
"Quantitative URL will appear here...", visible=False)
quantitative_data_display = gr.Markdown(
"Aggregate data will appear here...", visible=False)
with gr.Accordion("Retrieved Qualitative Data (Examples)", open=False):
qualitative_url_display = gr.Markdown(
"Qualitative URL will appear here...", visible=False)
qualitative_data_display = gr.Markdown(
"Example data will appear here...", visible=False)
with gr.Accordion("Token Usage", open=False):
token_summary_box = gr.Markdown(visible=False)
plot_display = gr.Image(
label="Visualization", type="filepath", visible=False)
report_display = gr.Markdown(
"Report will be streamed here...", visible=False)
def process_analysis_flow(user_input, history, state):
"""
Manages the conversation and yields UI updates.
"""
analysis_plan_input_token_count = analysis_plan_output_token_count = analysis_plan_total_token_count = None
enriched_report_input_token_count = enriched_report_output_token_count = enriched_report_total_token_count = None
visualization_input_token_count = visualization_output_token_count = visualization_total_token_count = None
if state is None:
state = {'query_count': 0, 'last_suggestions': []}
if history is None:
history = []
# Reset all displays at the beginning of a new flow
yield (history, state, gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value="Suggestions from the external API will appear here...", visible=False))
query_context = user_input.strip()
if not query_context:
history.append((user_input, "Please enter a question to analyze."))
yield (history, state, None, None, None, None, None, None, None, None, None)
return
history.append((user_input, f"Analyzing: '{query_context}'\n\n*Generating analysis plan...*"))
yield (history, state, None, None, None, None, None, None, None, None, None)
# Generate plan, get search field suggestions, and intent.
analysis_plan, mapped_search_fields, core_name, intent, analysis_plan_input_token_count, analysis_plan_output_token_count, analysis_plan_total_token_count = llm_generate_analysis_plan_with_history(llm_model, query_context, history)
# Update and display search field suggestions in its own accordion
if mapped_search_fields:
suggestions_md = "**API Suggestions (with mappings applied):**\n" + "\n".join([f"- `{field['field_name']}`: `{field['field_value']}`" for field in mapped_search_fields])
suggestions_display_update = gr.update(value=suggestions_md, visible=True)
else:
suggestions_display_update = gr.update(value="No suggestions were returned from the external API.", visible=True)
if not analysis_plan:
if intent and intent != 'search_list':
message = f"I am sorry, I can only perform analysis for 'search_list' type queries. Your query was identified as a '{intent}', which is not supported."
else:
message = "I'm sorry, I couldn't generate a valid analysis plan. Please try rephrasing your question."
history.append((None, message))
yield (history, state, None, None, None, None, None, None, None, None, suggestions_display_update)
return
history.append((None, f"βœ… Analysis plan generated for core: **`{core_name}`**"))
plan_summary = f"""
* **Analysis Dimension:** `{analysis_plan.get('analysis_dimension')}`
* **Analysis Measure:** `{analysis_plan.get('analysis_measure')}`
* **Query Filter:** `{analysis_plan.get('query_filter')}`
"""
history.append((None, plan_summary))
formatted_plan = f"**Full Analysis Plan (Core: `{core_name}`):**\n```json\n{json.dumps(analysis_plan, indent=2)}\n```"
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, None, None, None, suggestions_display_update)
history.append((None, "*Executing queries for aggregates and examples...*"))
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, None, None, None, suggestions_display_update)
# --- DYNAMIC CORE SWITCH (Thread-safe) ---
with solr_lock:
original_solr_url = solr_client.url
# Correctly construct the new URL by replacing the last component (the core name)
base_url = original_solr_url.rsplit('/', 1)[0]
new_url = f"{base_url}/{core_name}"
solr_client.url = new_url
print(f"[INFO] Switched Solr client to core: {core_name} at URL: {solr_client.url}")
# Execute queries in parallel
aggregate_data, quantitative_url = None, None
example_data, qualitative_url = None, None
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
future_agg = executor.submit(execute_quantitative_query, solr_client, analysis_plan)
future_ex = executor.submit(execute_qualitative_query, solr_client, analysis_plan)
aggregate_data, quantitative_url = future_agg.result()
example_data, qualitative_url = future_ex.result()
finally:
# --- IMPORTANT: Reset client to default URL ---
solr_client.url = original_solr_url
print(f"[INFO] Reset Solr client to default URL: {original_solr_url}")
if not aggregate_data or aggregate_data.get('count', 0) == 0:
history.append((None, f"No data was found for your query in the '{core_name}' core. Please try a different question."))
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), None, None, None, None, None, suggestions_display_update)
return
# Display retrieved data
quantitative_url_update = gr.update(value=f"**Solr URL:** [{quantitative_url}]({quantitative_url})", visible=True)
qualitative_url_update = gr.update(value=f"**Solr URL:** [{qualitative_url}]({qualitative_url})", visible=True)
formatted_agg_data = f"**Quantitative (Aggregate) Data:**\n```json\n{json.dumps(aggregate_data, indent=2)}\n```"
formatted_qual_data = f"**Qualitative (Example) Data:**\n```json\n{json.dumps(example_data, indent=2)}\n```"
qual_data_display_update = gr.update(value=formatted_qual_data, visible=True)
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), quantitative_url_update, gr.update(value=formatted_agg_data, visible=True), qualitative_url_update, qual_data_display_update, None, suggestions_display_update)
history.append((None, "βœ… Data retrieved. Generating visualization and final report..."))
yield (history, state, None, None, gr.update(value=formatted_plan, visible=True), quantitative_url_update, gr.update(value=formatted_agg_data, visible=True), qualitative_url_update, qual_data_display_update, None, suggestions_display_update)
# Generate viz and report
with concurrent.futures.ThreadPoolExecutor() as executor:
viz_future = executor.submit(llm_generate_visualization_code, llm_model, query_context, aggregate_data)
viz_code, visualization_input_token_count, visualization_output_token_count, visualization_total_token_count = viz_future.result()
report_text = ""
stream_history = history[:]
report_stream = llm_synthesize_enriched_report_stream(llm_model, query_context, aggregate_data, example_data, analysis_plan)
for item in report_stream:
if item["text"] is not None:
report_text += item["text"]
yield (stream_history, state, None, gr.update(value=report_text, visible=True), gr.update(value=formatted_plan, visible=True), quantitative_url_update, gr.update(value=formatted_agg_data, visible=True), qualitative_url_update, qual_data_display_update, None, suggestions_display_update)
elif item["tokens"] is not None:
enriched_report_input_token_count = item["tokens"]["input"]
enriched_report_output_token_count = item["tokens"]["output"]
enriched_report_total_token_count = item["tokens"]["total"]
history.append((None, report_text))
plot_path = execute_viz_code_and_get_path(viz_code, aggregate_data)
output_plot = gr.update(value=plot_path, visible=True) if plot_path else gr.update(visible=False)
if not plot_path:
history.append((None, "*I was unable to generate a plot for this data.*\n"))
cumulative_tokens = sum(filter(None, [
analysis_plan_total_token_count,
enriched_report_total_token_count,
visualization_total_token_count
]))
total_input = sum(filter(None, [
analysis_plan_input_token_count,
enriched_report_input_token_count,
visualization_input_token_count
]))
total_output = sum(filter(None, [
analysis_plan_output_token_count,
enriched_report_output_token_count,
visualization_output_token_count
]))
expected_cost = round((total_input*0.3+total_output*2.5)/1000000, 3)
token_summary_box_update = gr.update(
value=f"""**Analysis Plan Tokens** β†’ Prompt: `{analysis_plan_input_token_count or '-'}`, Output: `{analysis_plan_output_token_count or '-'}`, Total: `{analysis_plan_total_token_count or '-'}`
**Report Tokens** β†’ Prompt: `{enriched_report_input_token_count or '-'}`, Output: `{enriched_report_output_token_count or '-'}`, Total: `{enriched_report_total_token_count or '-'}`
**Visualization Tokens** β†’ Prompt: `{visualization_input_token_count or '-'}`, Output: `{visualization_output_token_count or '-'}`, Total: `{visualization_total_token_count or '-'}`
**Cumulative Tokens** β†’ `{cumulative_tokens}`
**Expected Cost** β†’ `{expected_cost}$`""",
visible=True
)
yield (history, state, output_plot, gr.update(value=report_text), gr.update(value=formatted_plan, visible=True), quantitative_url_update, gr.update(value=formatted_agg_data, visible=True), qualitative_url_update, qual_data_display_update, token_summary_box_update, suggestions_display_update)
state['query_count'] += 1
state['last_suggestions'] = parse_suggestions_from_report(report_text)
next_prompt = "Analysis complete. What would you like to explore next?"
history.append((None, next_prompt))
yield (history, state, output_plot, gr.update(value=report_text), gr.update(value=formatted_plan, visible=True), quantitative_url_update, gr.update(value=formatted_agg_data, visible=True), qualitative_url_update, qual_data_display_update, token_summary_box_update, suggestions_display_update)
def reset_all():
"""Resets the entire UI for a new analysis session."""
return (
[],
None,
"",
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False),
gr.update(value=None, visible=False)
)
msg_textbox.submit(
fn=process_analysis_flow,
inputs=[msg_textbox, chatbot, state],
outputs=[chatbot, state, plot_display, report_display, plan_display, quantitative_url_display,
quantitative_data_display, qualitative_url_display, qualitative_data_display, token_summary_box, suggestions_display],
).then(
lambda: gr.update(value=""),
None,
[msg_textbox],
queue=False,
)
clear_button.click(
fn=reset_all,
inputs=None,
outputs=[chatbot, state, msg_textbox, plot_display, report_display, plan_display, quantitative_url_display,
quantitative_data_display, qualitative_url_display, qualitative_data_display, token_summary_box, suggestions_display],
queue=False
)
return demo